Определение спектральной плотности мощности. Энергетические характеристики сигналов. Спектральная плотность энергии. ІV Список использованной литературы

При исследовании автоматических систем управления удобно пользоваться еще одной характеристикой стационарного случайного процесса, называемой спектральной плотностью. Во многих случаях, особенно при изучении преобразования стационарных случайных процессов линейными системами управления, спектральная плотность оказывается более удобной характеристикой, чем корреляционная функция. Спектральная плотность случайного процесса определяется как преобразование Фурье корреляционной функцией , т. е.

Если воспользоваться формулой Эйлера то (9.52) можно представить как

Так как нечетная функция то в последнем выражении второй интеграл равен нулю. Учитывая, что четная функция получаем

Так как то из (9.53) следует, что

Таким образом, спектральная плотность является действительной и четной функцией частоты о). Поэтому на графике спектральная плотность всегда симметрична относительно оси ординат.

Если спектральная плотность известна, то по формуле обратного преобразования Фурье можно найти соответствующую ей корреляционную функцию:

Используя (9.55) и (9.38), можно установить важную зависимость между дисперсией и спектральной плотностью случайного процесса:

Термин «спектральная плотность» обязан своим происхождением теории электрических колебаний. Физический смысл спектральной плотности можно пояснить следующим образом.

Пусть - напряжение, приложенное к омическому сопротивлению 1 Ом, тогда средняя мощность рассеиваемая на этом сопротивлении за время равна

Если увеличивать интервал наблюдения до бесконечных пределов и воспользоваться (9.30), (9.38) и (9.55) при то можно формулу для средней мощности записать так:

Равенство (9.57) показывает, что средняя мощность сигнала может быть представлена в виде бесконечной суммы бесконечно малых слагаемых , которая распространяется на все частоты от 0 до

Каждое элементарное слагаемое этой суммы играет роль мощности, соответствующей бесконечно малому участку спектра, заключенному в пределах от до Каждая элементарная мощность - пропорциональна значению функции для данной частоты Следовательно, физический смысл спектральной плотности состоит в том, что она характеризует распределение мощности сигнала по частотному спектру.

Спектральная плотность может быть найдена экспериментально через среднюю величину квадрата амплитуды гармоник реализации случайного процесса. Приборы, применяемые для этой цели и состоящие анализатора спектра и вычислителя среднего значения квадрата амплитуды гармоник, называются спектрометрами. Экспериментально находить спектральную плотность сложнее, чем корреляционную функцию, поэтому на практике чаще всего спектральную плотность вычисляют но известной корреляционной функции с помощью формулы (9.52) или (9.53).

Взаимная спектральная плотность двух стационарных случайных процессов определяется как преобразование Фурье от взаимной корреляционной функции т. е.

По взаимной спектральной плотности можно, применяя к (9.58) обратное преобразование Фурье, найти выражение для взаимной корреляционной функции:

Взаимная спектральная плотность является мерой статистической связи между двумя стационарными случайными процессами: Если процессы некоррелированы и имеют равные нулю средние значения, то взаимная спектральная плотность равна нулю, т. е.

В отличие от спектральной плотности взаимная спектральная плотность не является четной функцией о и представляет собой не вещественную, а комплексную функцию.

рассмотрим некоторые свойства спектральных плотностей

1 Спектральная плотность чистого случайного процесса, или белого шума, постоянна во всем диапазоне частот (см. рис. 9.5, г):

Действительно, подставляя в (9.52) выражение (9.47) для корреляционной функции белого шума, получим

Постоянство спектральной плотности белого шума во всем бесконечном диапазоне частот, полученное в последнем выражении, означает, что энергия белого шума распределена по всему спектру равномерно, а суммарная энергия процесса равна бесконечности. Это указывает на физическую нереализуемость случайного процесса типа белого шума. Белый шум является математической идеализацией реального процесса. В действительности частотный спектр западает на очень высоких частотах (как показано пунктиром на рис. 9.5, г). Если, однако, эти частоты настолько велики, что при рассмотрении какого-либо конкретного устройства они не играют роли (ибо лежат вне полосы частот, пропускаемых этим устройством), то идеализация сигнала в виде белого шума упрощает рассмотрение и поэтому вполне целесообразна.

Происхождение термина «белый шум» объъясняется аналогией такого процесса с белым светом, имеющим одинаковые интенсивности всех компонент, и тем, что случайные процессы типа белого шума впервые были выделены при исследовании тепловых флуктуациоиных шумов в радиотехнических устройствах.

2. Спектральная плотность постоянного сигнала представляет собой -функцию, расположенную в начале координат (см. рис. 9.5, а), т. е.

Чтобы доказать это, допустим, что спектральная плотность имеет вид (9.62), и иандем по (9.55) соответствующую ей корреляционную функцию. Так как

то при получаем

Это (в соответствии со свойством 5 корреляционных функций) означает, что сигнал, соответствующий спектральной плотности, определяемой (9.62), является постоянным сигналом, равным

Тот факт, что спектральная плотность представляет собой -функцию при означает, что вся мощность постоянного сигнала сосредоточена на нулевой частоте, что и следовало ожидать.

3. Спектральная плотность периодического сигнала представляет собой две -функции, расположенные симметрично относительно начала кординат при (см. рис. 9.5, д), т. е.

Чтобы доказать это, допустим, что спектральная плотность имеет вид (9.63), и найдем по (9.55) соответствующую ей корреляционную функцию:

Это (в соответствии со свойством 6 корреляционных функций) означает, что сигнал, соответствующий спектральной плотности определяемой (9.63), является периодическим сиг налом, равным

Тот факт, что спектральная плотность представляет собой две -функции, расположенные при означает, что вся мощность периодического сигнала сосредоточена на двух частотах: Если рассматривать спектральную плотность только в области положительных частот, то получим,

что вся мощность периодического сигнала будет сосредоточена на одной частоте .

4. Спектральная плотность временной функции, разлагаемой в ряд Фурье имеет на основании изложенного выше вид

Этой спектральной плотности соответствует линейчатый спектр (рис. 9.9) с -функциями, расположенными на положительных и отрицательных частотах гармоник. На рис. 9.9 -функции условно изображены так, что их высоты показаны пропорциональными коэффициентам при единичной -функции, т. е. величинам и

Заметим, что спектральная плотность как это следует из (9.64), не содержит, так же как и корреляционная функция, определяемая (9.44), никаких сведений о фазовых сдвигах отдельных гармонических составляющих. и наоборот. Это соответствует физической сущности процесса: чем шире график спектральной плотности, т. е. чем более высокие частоты представлены в спектральной плотности, тем выше степень изменчивости случайного процесса и тем же графики корреляционной функции. Другими словами, связь между видом спектральной плотности и видом функции времени получается обратной по сравнению со связью между корреляционной функцией и видом функции времени. Это особенно ярко проявляется при рассмотрении постоянного сигнала и белого шума. В первом случае корреляционная функция имеет вид горизонтальной прямой, а спектральная плотность имеет вид -функции (см. рис. 9.5, а). Во втором случае (см. рис. 9.5, г) имеет место обратная картина.

6. Спектральная плотность случайного процесса, на кото рой наложены периодические составляющие, содержит непрерывную часть и отдельные -функции, соответствующие частотам периодических составляющих.

Отдельные пики на графике спектральной плотности указывают на то, что случайный процесс смешан со скрытыми периодическими составляющими, которые могут и не обнаруживаться при первом взгляде на отдельные записи процесса. Если, например, на случайный процесс наложен один периодический сигнал с частотой то график; сцектральной плотности имеет вид, показанный на рис. 9.10,

Иногда в рассмотрение вводят нормированную

спектральную плотность являющуюся изображением Фурье нормированной корреляционной функции (9.48):

Нормированная спектральная плотность имеет размерность времени.


Пусть дан некоторый сигнал , который характеризует изменение напряжения или силы тока во времени. Тогда будет определять мгновенную мощность, выделяемую на сопротивлении 1 Ом.

Проинтегрируем мгновенную мощность на некотором интервале времени и получим энергию сигнала на данном интервале:

Тогда средняя мощность сигнала на данном интервале времени равна:

Если сигнал является периодическим, то среднюю мощность можно получить путем усреднения на одном периоде повторения сигнала. В случае абсолютно-интегрируемого непериодического сигнала , интервал интегрирования может быть расширен на всю ось времени:

Можно заметить, что средняя мощность абсолютно-интегрируемого непериодического сигнала равна нулю при усреднении на бесконечном интервале времени. Аналогично, энергия периодического сигнала на всей оси времени равна бесконечности.

Таким образом, периодические сигналы, повторяющиеся на все оси времени мы можем характеризовать конечной средней мощностью , поскольку их энергия бесконечна. Непериодические сигналы характеризуются конечной энергией , потому что их средняя мощность на все оси времени равна нулю.

Выражения (1)-(3) справедливы и для комплексного сигнала . В этом случае, мгновенную мощность можно определить как .

Скалярное произведение сигналов. Обобщенная формула Рэлея

Пусть даны два сигнала и , в общем случае комплексные. Скалярным произведением сигналов называется величина равная:

Интеграл (4) возвращает одно число (скаляр), в общем случае комплексное.

Заметим, что скалярное произведение сигнала с самим собой возвращает энергию данного сигнала:

Тогда скалярное произведение (4) можно трактовать как величину взаимной энергии сигналов и , т.е. степень взаимного влияния одного сигнала на другой. Если два сигнала и имеют нулевое скалярное произведение, то говорят, что они ортогональны.

Подставим в (4) вместо обратное преобразование Фурье его спектральной плотности . Тогда:

Поменяем в (6) порядок интегрирования:

Можно сделать вывод: скалярное произведение сигналов во временно́й области, с точностью до множителя , равно скалярному произведению спектральных плотностей данных сигналов. Выражение (7) носит название обобщенной формулы Рэлея .

Равенство Парсеваля

Ранее мы уже рассматривали равенство Парсеваля, связывающее среднюю мощность периодического сигнала. Для непериодических сигналов мы можем получить аналогичное равенство энергии сигнала во времени и в частотной области. Для этого в обобщенную формулу Рэлея подставим и получим:

Или с учетом (4) равенство Парсеваля :

Таким образом, энергия сигнала во временно́й и частотной областях равна с точностью до множителя .

Если в выражениях (7)-(9) использовать частоту , выраженную в герц, вместо циклической частоты , измеряемой в единицах рад/c, то и множитель сокращается:

Спектральная плотность энергии сигнала

При рассмотрении предельного перехода к преобразованию Фурье было введено понятие спектральной плотности сигнала и была приведена аналогия поясняющая понятие спектральной плотности, и ее отличие от спектра периодического сигнала.

Из равенства (9) следует, что энергия сигнала может быть представлена как интеграл по всей оси частот:

Тогда использую ту же аналогию, что и в разделе, в частности сравнивая (12) с, можно заключить, что представляет собой спектральную плотность энергии сигнала. Проинтегрировав по всей оси , мы получим полную энергию сигнала, равно как проинтегрировав плотность стержня по длине мы получим полную массу. Спектральная плотность энергии представляет собой квадрат АЧХ сигнала. Кроме того является вещественной неотрицательной функцией частоты . Спектральная плотность энергии сигнала измеряется в единицах джоуль на герц (Дж/Гц) или ватт, умноженный на секунду в квадрате (Втс).

Сделаем важное замечание. Спектральная плотность энергии игнорирует ФЧХ сигнала. Тогда можно заключить, что одной и той же спектральной плотности энергии могут соответствовать множество различных сигналов, имеющих одинаковую АЧХ и различные ФЧХ.

Спектральные плотности сигналов имеют убывающий по частоте характер , и на практике анализ поведения убывающей спектральной плотности с ростом частоты имеет важное значение. Однако графический анализ бывает затруднителен ввиду высокой скорости убывания спектральной плотности по частоте, а в случае спектральной плотности энергии затруднителен вдвойне, поскольку возведение АЧХ в квадрат только ускоряет убывание. Поэтому широкое распространение получило представление спектральной плотности энергии в логарифмическом масштабе, выраженной в единицах децибел (дБ):

В качестве примера на рисунке 1 приведены спектральные плотности энергии прямоугольного, треугольного, двустороннего экспоненциального и гауссова импульсов в линейном и логарифмическом масштабе.

Рисунок 1. Спектральная плотность энергии некоторых сигналов
а — в линейном масштабе; б — в логарифмическом масштабе

Как видно из рисунка 1а, спектральные плотности энергии импульсов в линейном масштабе практически сливаются и очень сложно различимы.

В логарифмическом масштабе (рисунок 1б), спектральные плотности энергии обнаруживают значительные отличия. Треугольный и экспоненциальный импульсы имеют одинаковую скорость убывания спектральной плотности энергии, а прямоугольный импульс имеет очень медленное затухание спектральной плотности энергии с ростом частоты. Гауссов импульс, напротив, отличается очень быстрым затуханием .

Логарифмическая шкала представления спектральной плотности энергии оказывается удобной при сравнении характеристик сигналов. Если энергии двух сигналов отличаются в 100 раз, то в логарифмической шкале отношение их энергий составляет 20 дБ. Если же энергии отличаются в 1000000 раз, то в логарифмической шкале это соответствует 60 дБ. Удвоение энергии сигнала, в логарифмической шкале соответствует прибавлению 3 дБ.

Выводы

В данном разделе мы рассмотрели энергетические характеристики периодических и непериодических сигналов. Мы показали, что периодические сигналы имеют бесконечную энергию, но конечную среднюю мощность. Средняя мощность непериодических сигналов стремится к нулю, а их энергия конечна.

Было введено понятие скалярного произведения сигналов и получена обобщенная формула Релея,связывающая скалярное произведение во временной и частотной областях.

Установлено равенство Парсеваля для непериодических сигналов, как частный случай формулы Релея.

Введено понятие спектральной плотности энергии как квадрата модуля спектральной плотности сигнала. Также рассмотрено представление спектральной плотности энергии в линейном и логарифмическом масштабе для различных сигналов.

Смотри также

Преобразования Фурье непериодических сигналов
Свойства преобразования Фурье
Спектральные плотности некоторых сигналов

Список литературы

Баскаков, С.И. Москва, ЛЕНАНД, 2016, 528 c. ISBN 978-5-9710-2464-4


Гоноровский И.С. Радиотехнические цепи и сигналы Москва, Советское радио, 1977, 608 c.

Пусть сигнал s (t ) задан в виде непериодической функции, причем он существует только на интервале (t 1 ,t 2) (пример - одиночный импульс). Выберем произвольный отрезок времени T , включающий в себя интервал (t 1 ,t 2) (см. рис.1).

Обозначим периодический сигнал, полученный из s (t ), в виде (t ). Тогда для него можно записать ряд Фурье

Для того, чтобы перейти к функции s (t ) следует в выражении (t ) устремить период к бесконечности. При этом число гармонических составляющих с частотами w =n 2p /T будет бесконечно велико, расстояние между ними будет стремиться к нулю (к бесконечно малой величине:

амплитуды составляющих также будут бесконечно малы. Поэтому говорить о спектре такого сигнала уже нельзя,т.к.спектр становится сплошным.

Внутренний интеграл является функцией частоты. Его называют спектральной плотностью сигнала, или частотной характеристикой сигнала и обозначают т.е.

Пределы интегрирования можно для общности поставить бесконечными, так как все равно там, где s(t) равна нулю, и интеграл равен нулю.

Выражение для спектральной плотности называют прямым преобразованием Фурье. Обратное преобразование Фурье определяет временную функцию сигнала по его спектральной плотности

рямое (*) и обратное (**) преобразования Фурье вместе называют парой преобразований Фурье. Модуль спектральной плотности

определяет амплитудно-частотную характеристику (АЧХ) сигнала, а ее аргумент называют фазо-частотной характеристикой (ФЧХ) сигнала. АЧХ сигнала является четной функцией, а ФЧХ - нечетной.

Смысл модуля S (w ) определяется как амплитуда сигнала (тока или напряжения), приходящаяся на 1 Гц в бесконечно узкой полосе частот, которая включает в себя рассматриваемую частоту w . Его размерность - [сигнал/частота].

Энергетический спектр сигнала. Если функция s(t) имеет фурье-плотность мощности сигнала (спектральная плотность энергии сигнала ) определяется выражением:

w(t) = s(t)s*(t) = |s(t)|2  |S()|2 = S()S*() = W(). (5.2.9)

Спектр мощности W()-вещественная неотрицательная четная функция, которую обычно называют энергетическим спектром. Спектр мощности, как квадрат модуля спектральной плотности сигнала, не содержит фазовой информации о его частотных составляющих, а, следовательно, восстановление сигнала по спектру мощности невозможно. Это означает также, что сигналы с различными фазовыми характеристиками могут иметь одинаковые спектры мощности. В частности, сдвиг сигнала не отражается на его спектре мощности. Последнее позволяет получить выражение для энергетического спектра непосредственно из выражений (5.2.7). В пределе, для одинаковых сигналов u(t) и v(t) при сдвиге t 0, мнимая часть спектра Wuv () стремится к нулевым значениям, а реальная часть - к значениям модуля спектра. При полном временном совмещении сигналов имеем:

т.е. энергия сигнала равна интегралу квадрата модуля его частотного спектра - сумме энергии его частотных составляющих, и всегда является вещественной величиной.

Для произвольного сигнала s(t) равенство

обычно называют равенством Парсеваля (в математике – теоремой Планшереля, в физике – формулой Релея). Равенство очевидно, так как координатное и частотное представления по существу только разные математические отображения одного и того же сигнала. Аналогично для энергии взаимодействия двух сигналов:

Из равенства Парсеваля следует инвариантность скалярного произведения сигналов и нормы относительно преобразования Фурье:

В целом ряде чисто практических задач регистрации и передачи сигналов энергетический спектр сигнала имеет весьма существенное значение. Периодические сигналы переводятся в спектральную область в виде рядов Фурье. Запишем периодический сигнал с периодом Т в виде ряда Фурье в комплексной форме:

Интервал 0-Т содержит целое число периодов всех подынтегральных экспонент, и равен нулю, за исключением экспоненты при k = -m, для которой интеграл равен Т. Соответственно, средняя мощность периодического сигнала равна сумме квадратов модулей коэффициентов его ряда Фурье:

Энергетический спектр сигнала – это распределение энергии базисных сигналов, которые составляют негармонический сигнал, на оси частот. Математически энергетический спектр сигнала равен квадрату модуля спектральной функции:

Соответственно амплитудно-частотный спектр показывает множество амплитуд составляющих базисных сигналов на частотной оси, а фазо-частотный – множество фаз

Модуль спектральной функции часто называют амплитудным спектром , а ее аргумент – фазовым спектром .

Кроме того, существует и обратное преобразование Фурье, позволяющее восстановить исходный сигнал, зная его спектральную функцию:

Например, возьмем прямогульный импульс:

Еще один пример спектров:

Частота Найквиста, теорема Котельникова .

Частота Найквиста - в цифровой обработке сигналов частота, равная половине частоты дискретизации. Названа в честь Гарри Найквиста. Из теоремы Котельникова следует, что при дискретизации аналогового сигнала потерь информации не будет только в том случае, если спектр (спектральная плотность)(наивысшая частота полезного сигнала) сигнала равен или ниже частоты Найквиста. В противном случае при восстановлении аналогового сигнала будет иметь место наложение спектральных «хвостов» (подмена частот, маскировка частот), и форма восстановленного сигнала будет искажена. Если спектр сигнала не имеет составляющих выше частоты Найквиста, то он может быть (теоретически) продискретизирован и затем восстановлен без искажений. Фактически «оцифровка» сигнала (превращение аналогового сигнала в цифровой) сопряжена с квантованием отсчѐтов - каждый отсчѐт записывается в виде цифрового кода конечной разрядности, в результате чего к отсчетам добавляются ошибки квантования (округления), при определенных условиях рассматриваемые как «шум квантования».

Реальные сигналы конечной длительности всегда имеют бесконечно широкий спектр, более или менее быстро убывающий с ростом частоты. Поэтому дискретизация сигналов всегда приводит к потерям информации (искажению формы сигнала при дискретизации-восстановлении), как бы ни была высока частота дискретизации. При выбранной частоте дискретизации искажение можно уменьшить, если обеспечить подавление спектральных составляющих аналогового сигнала (до дискретизации), лежащих выше частоты Найквиста, для чего требуется фильтр очень высокого порядка, чтобы избежать наложения «хвостов». Практическая реализация такого фильтра весьма сложна, так как амплитудно-частотные характеристики фильтров имеют не прямоугольную, а гладкую форму, и образуется некоторая переходная полоса частот между полосой пропускания и полосой подавления. Поэтому частоту дискретизации выбирают с запасом, к примеру, в аудио компакт-дисках используется частота дискретизации 44100 Герц, в то время как высшей частотой в спектре звуковых сигналов считается частота 20000 Гц. Запас по частоте Найквиста в 44100 / 2 - 20000 = 2050 Гц позволяет избежать подмены частот при использовании реализуемого фильтра невысокого порядка.

Теорема Котельникова

Для того, чтобы восстановить исходный непрерывный сигнал из дискретизированного с малыми искажениями (погрешностями), необходимо рационально выбрать шаг дискретизации. Поэтому при преобразовании аналогового сигнала в дискретный обязательно возникает вопрос о величине шага дискретизации Интуитивно нетрудно понять следующую идею. Если аналоговый сигнал обладает низкочастотным спектром, ограниченным некоторой верхней частотой Fe, (т.е. функция u(t) имеет вид плавно изменяющейся кривой, без резких изменений амплитуды), то вряд ли на некотором небольшом временном интервале дискретизации эта функция может существенно изменяться по амплитуде. Совершенно очевидно, что точность восстановления аналогового сигнала по последовательности его отсчетов зависит от величины интервала дискретизации Чем он короче, тем меньше будет отличаться функция u(t) от плавной кривой, проходящей через точки отсчетов. Однако с уменьшением интервала дискретизации существенно возрастает сложность и объем обрабатывающей аппаратуры. При достаточно большом интервале дискретизации возрастает вероятность искажения или потери информации при восстановлении аналогового сигнала. Оптимальная величина интервала дискретизации устанавливается теоремой Котельникова (другие названия - теорема отсчетов, теорема К. Шеннона, теорема X. Найквиста: впервые теорема была открыта в математике О. Коши, а затем описана повторно Д. Карсоном и Р. Хартли), доказанной им в 1933 г. Теорема В. А. Котельникова имеет важное теоретическое и практическое значение: дает возможность правильно осуществить дискретизацию аналогового сигнала и определяет оптимальный способ его восстановления на приемном конце по отсчетным значениям.

Согласно одной из наиболее известных и простых интерпретаций теоремы Котельникова, произвольный сигнал u(t), спектр которого ограничен некоторой частотой Fe может - быть полностью восстановлен по последовательности своих отсчетных значений, следующих с интервалом времени

Интервал дискретизации и частоту Fe (1) в радиотехнике часто называют соответственно интервалом и частотой Найквиста. Аналитически теорема Котельникова представляется рядом

где k - номер отсчета; - значение сигнала в точках отсчета - верхняя частота спектра сигнала.

Частотное представление дискретных сигналов .

Большинство сигналов можно представить в виде ряда Фурье:

Под энергией сигнала иЦ) понимают величину

Если сигнал имеет конечную длительность Т, т.е. не равен нулю на отрезке времени [-Т/ 2, Т/ 2], то его энергия

Запишем выражение для энергии сигнала, используя формулу (2.15):

где

Полученное равенство называется равенством Парсеваля. Оно определяет энергию сигнала через временную функцию или спектральную плотность энергии, которая равна |5(/0))| 2 . Спектральная плотность энергии называется также энергетическим спектром.

Рассмотрим сигнал, существующий на ограниченном интервале времени. К такому сигналу применимо равенство Парсеваля. Следовательно,

Разделим левую и правую части равенства на интервал времени, равный Г, и устремим этот интервал к бесконечности:

С увеличением Т энергия незатухающих сигналов возрастает,

однако отношение может стремиться к определенному пределу. Этот предел называется спектральной плотностью мощности С(со). Размерность спектральной плотности мощности: [В 2 Дц].

Автокорреляционная функция

Автокорреляционная функция сигнала и (?) определяется следующим интегральным выражением:

где т - аргумент, определяющий функцию Я(х) и имеющий размерность времени; и(? + т) - исходный сигнал, сдвинутый во времени на величину -т.

Автокорреляционная функция имеет следующие свойства.

1. Значение автокорреляционной функции при сдвиге т = О равно энергии сигнала Е:

2. Автокорреляционная функция при сдвигах т Ф 0 меньше энергии сигнала:

3. Автокорреляционная функция является четной функцией, т.е.

В справедливости свойств 2 и 3 убедимся на примере.

Пример 2.6. Вычислить автокорреляционные функции сигналов: видеосигнала, представленного на рис. 2.7, я, и радиосигнала с теми же амплитудой и длительностью. Несущая частота радиосигнала равна щ, а начальная фаза равна 0.

Решение. Первую задачу решим графическим способом. Автокорреляционная функция определяется интегралом от произведения функции и (?) и ее смещенной во времени копии. Смещение видеосигнала найдем из уравнения? + т = 0. График функции м(? + т) приведен на рис. 2.7, б. Площадь, определяемая графиком произведения м(?)м(? + т) (рис. 2.7, в), равна

Функция Д(т) определяется уравнением прямой (рис. 2.7, г). Функция имеет максимум, если значение аргумента т = 0, и равна 0, если т = т и. Для других значений аргумента /?(т)

Чтобы убедиться в справедливости свойства 3, аналогично вычислим функцию для отрицательных значений т:

Рис. 2.7.

видеоимпульса:

а - прямоугольный видеоимпульс; б - задержанный во времени прямоугольный импульс; в - произведение импульсов; г - автокорреляционная функция

Окончательное выражение для автокорреляционной функции

Функция приведена на рис. 2.7, г и имеет треугольный вид.

Вычислим автокорреляционную функцию радиосигнала, расположив его симметрично относительно вертикальной оси. Радиосигнал:

Подставляя значения сигнала и его сдвинутой копии в формулу для автокорреляционной функции /?(т), получим

Выражение для автокорреляционной функции радиоимпульса состоит из двух слагаемых. Первое из них определяется произведением треугольной функции и гармонического сигнала. На выходе согласованного фильтра это слагаемое реализуется в виде ромбовидного радиоимпульса. Второе слагаемое определяется произведением треугольной функции и функций (втд^/лг, расположенных в точках т = +т и. Значения функций (втх)/:*:, которые оказывают заметное влияние на второе слагаемое автокорреляционной функции, весьма быстро убывают при изменении аргумента т от -т и до оо и от т и до -°о. Решив уравнение

можно найти интервалы задержки, в пределах которых значения функций (втлс)/;*; еще влияют на поведение функции /?(т). Для положительных значений задержки

где 7о - период гармонического сигнала.

Аналогично находится интервал для отрицательных значений задержки.

Поскольку влияние второго слагаемого автокорреляционной функции ограничивается весьма малыми (по сравнению с длительностью радиоимпульсов т и) интервалами 7о/2, в пределах которых значения треугольной функции весьма малы, то вторым слагаемым автокорреляционной функции радиоимпульса можно пренебречь.

Выявим связь автокорреляционной функции #(т) со спектральной плотностью энергии сигнала |5(/со)| 2 . Для этого выразим сдвинутый во времени сигнал и(1ь + т) через его спектральную плотность 5(/со):

Подставим данное выражение в выражение (2.21). В результате получим

Нетрудно убедиться также в справедливости равенства

Разделим обе части равенства (2.23) на интервал времени Т и устремим величину Т к бесконечности:

С учетом формулы (2.20) перепишем полученное выражение:

где
- предел отношения автокорреляционной функции ограниченного во времени сигнала к значению этого времени и при стремлении его к бесконечности. Если этот предел существует, то он определяется обратным преобразованием Фурье от спектральной плотности мощности сигнала.

Обобщением понятия «автокорреляционная функция» является взаимно корреляционная функция, которая представляет собой скалярное произведение двух сигналов:

Рассмотрим основные свойства взаимно корреляционной функции.

1. Перестановка сомножителей под знаком интеграла изменяет знак аргумента взаимно корреляционной функции:

В приведенных преобразованиях использована замена t + т = х.

  • 2. Взаимно корреляционная функция, в отличие от автокорреляционной функции, не является четной относительно аргумента т.
  • 3. Взаимно корреляционная функция определяется обратным преобразованием Фурье от произведения спектральных плотностей сигналов u(t), v(t) :

Эта формула может быть выведена аналогично формуле (2.22).

Взаимно корреляционная функция между периодически повторяющимся сигналом и непериодическим

сигналом v(t ) = Uq(?)

где R(t) - автокорреляционная функция непериодического сигнала u 0 (t).

Полученное выражение равно сумме двух интегралов. При сдвиге, равном нулю, первый интеграл равен нулю, а второй равен энергии сигнала. При сдвиге, равном периоду сигнала, первый интеграл равен энергии сигнала, а второй равен нулю. Каждое значение функции при других сдвигах равно сумме значений автокорреляционных функций непериодического сигнала, смещенных относительно друг друга на один период. Кроме того, взаимно корреляционная функция является периодической функцией, удовлетворяющей уравнению

Взаимно корреляционная функция Я ил> (т) между сигналом u(t ) и сигналом

равна - длительность сигнала v(t).

Действительно, вследствие того что период сигнала u(t ) равен Т и

взаимно корреляционная функция где

Вычисляя предел функции (2п + 1)7? м Мо (т) при п -> определим выражение для автокорреляционной функции периодического сигнала:

Размерность функции: [В 2 /Гц].

Значения функции при нулевом сдвиге и других сдвигах, для которых Лц Мо (т) Ф 0, равны бесконечности. По этой причине использование последнего выражения в качестве характеристики периодического сигнала теряет смысл.

Разделим последнее выражение на интервал, равный (2п + 1 )Т. В результате получим функцию


так как вследствие периодичности функции - т + Т) = - т).

Полученная формула определяет функцию В(т) как предел отношения автокорреляционной функции сигнала, существующего в интервале времени (2п + 1 )Т, к этому интервалу и стремлении его к бесконечности. Этот предел для периодически повторяющегося сигнала называется автокорреляционной функцией периодического сигнала. Размерность этой функции: [В 2 ].

Прямое преобразование Фурье одного периода автокорреляционной функции периодического сигнала определяет спектральную плотность мощности, которая является непрерывной функцией частоты. По этой плотности, используя формулу (2.17), можно найти спектральную плотность мощности периодической автокорреляционной функции сигнала , которая определяется для дискретных значений частот:

где 0)1 = 2п/Т.

Если автокорреляционная функция записана в виде ряда Фурье в тригонометрической форме, то выражение для ее спектральной плотности

Пример 2.7. Вычислить периодическую автокорреляционную функцию сигнала и(ф) = А бш СИ. По найденной функции, ограниченной одним периодом, определить спектральную плотность мощности.

Решение. Подставляя в выражение (2.26) заданный сигнал, получим выражение для периодической автокорреляционной функции:

Полученное выражение подставим в формулу (2.24) и найдем спектральную плотность мощности:

Пример 2.8. Для периодической нормированной автокорреляционной функции шумоподобного сигнала (М-последовательности с периодом N = 1023) вычислить спектральную плотность мощности. (Периодическая функция для последовательности меньшей длины (IV= 15) приведена на рис. 3.39.)

Решение. Для сравнительно большого периода ЛГ = 1023 значения автокорреляционной функции в интервале Т - То > т > То, где То - длительность импульса шумоподобной последовательности, примем равными нулю. В этом случае автокорреляционная функция определяется периодически повторяющейся с периодом Т последовательностью треугольных импульсов. Основание каждого треугольника равно 2то, а его высота равна 1. Уравнение, определяющее автокорреляционную функцию в пределах одного периода, равно В(т) = 1 - |т|/хо- Учитывая четность этой функции, определим коэффициенты ряда Фурье:

При вычислении интеграла использована формула

Подставляя вычисленные коэффициенты в формулу (2.27), ползшим

Спектральная плотность мощности периодической автокорреляционной функции равна взвешенной сумме бесконечно большого числа дельтафункций. Весовые множители определяются квадратом функции (этх)/:»:, умноженной на постоянный коэффициент 2я(то/Т).

Корреляционные функции цифровых сигналов связаны с корреляционными функциями последовательностей символов. Для кодовой последовательности (см. § 1.3) конечного числа N

двоичных символов автокорреляционная функция записывается в виде

где - двоичные символы, равные 0 или 1, или символы, равные -1, 1; д = О, 1, 2, ..., N - .

Последовательности символов могут быть как детерминированными, так и случайными. При передаче информации характерным свойством последовательности символов является их случайность. Значения автокорреляционной функции (при сдвигах, нс равных нулю), вычисленные по заранее записанной случайной последовательности конечной длины, также являются случайными.

Автокорреляционные функции детерминированных последовательностей, которые используются для синхронизации, а также в качестве носителей дискретных сообщений, являются детерминированными функциями.

Сигналы, построенные с использованием кодов или их кодовых последовательностей, называются кодированными сигналами.

Большинство свойств автокорреляционной функции кодовой последовательности совпадает с рассмотренными выше свойствами автокорреляционной функции сигнала.

При пулевом сдвиге автокорреляционная функция кодовой последовательности достигает максимума, который равен

Если символы равны -1, 1, то г(0) = N.

Значения автокорреляционной функции при других сдвигах меньше г(0).

Автокорреляционная функция кодовой последовательности является четной функцией.

Обобщением автокорреляционной функции является взаимно корреляционная функция. Для кодовых последовательностей одинаковой длины эта функция

где 2 } 0 6/, - символы соответственно первой и второй последовательности.

Многие свойства функции г 12 (д) совпадают со свойствами взаимно корреляционной функции рассмотренных выше сигналов. Если функция г^(д), I Ф для любой пары кода при сдвиге д = О равна нулю, то такие коды называются ортогональными. Краткое описание некоторых используемых в системах связи кодов приведено в приложениях 2-4.

Взаимно корреляционная функция между кодовой последовательностью и периодически повторяющейся той же последовательностью называется периодической автокорреляционной функцией кодовой последовательности. Выражение для функции следует из выражений (2.25), (2.26):

где г(д) - непериодическая автокорреляционная функция кодовой последовательности; д - значение сдвига между последовательностями.

Подставим в полученную формулу выражения автокорреляционных функций:

где а/г, а^+ц - элементы кодовой последовательности.

Периодическая автокорреляционная функция кодовой последовательности равна взаимно корреляционной функции, вычисленной для кодовой последовательности и циклически сдвинутых символов этой последовательности. Циклически сдвинутые кодовые последовательности, полученные по исходной последовательности а 0 = а 0 ,а { ,а 2 , ..., а м _ ь приведены ниже. Кодовая последовательность а { получена в результате сдвига исходной последовательности а 0 па один символ вправо и переноса последнего символа а дм в начало сдвинутой последовательности. Остальные последовательности получены аналогично:

Пример 2.9. Вычислить автокорреляционную и периодическую автокорреляционную функцию кодированного сигнала (рис. 2.8, а)

где и 0 (О - прямоугольный импульс с амплитудой А и длительностью т и.

Этот сигнал построен из прямоугольных импульсов, знак которых определяется весовыми коэффициентами: а 0 = ,а. = 1, а 2 = -1, а их число N = 3. Длительность сигнала равна Зт и.

Решение. Подставляя выражение для сигнала в формулу (2.21), получим

Произведем замену переменной t - кт н на х:

Обозначим: & - т = - и заменим дискретные переменные &, т на переменные к, ц. В результате получим

График автокорреляционной функции для заданного сигнала показан на рис. 2.8, б. Эта функция зависит от автокорреляционной функции /? 0 (т) прямоугольного импульса и значений автокорреляционной функции г(

Рис. 2.8. Автокорреляционная функция кодированного сигнала: а - кодированный сигнал; 6 - автокорреляционная функция сигнала; в - автокорреляционная функция периодического сигнала

Вычислим периодическую автокорреляционную функцию, используя рассчитанную выше автокорреляционную функцию, полученные значения автокорреляционной функции кодовой последовательности и формулу (2.28).

Периодическая автокорреляционная функция

Подставим заданное значение N = 3 в полученную формулу:

С учетом значений автокорреляционной функции кодовой последовательности К+З) = 0, г(+ 2) = -1, г(+1) = О, КО) = 3 запишем окончательное выражение для одного периода периодической автокорреляционной функции сигнала:

График функции приведен на рис. 2.8, в.

Величина, характеризующая распределение энергии по спектру сигнала и называемая энергетической спектральной плотностью, существует лишь для сигналов, У которых энергия за бесконечный интервал времени конечна и, следовательно, к ним применимо преобразование Фурье.

Для незатухающих во времени сигналов энергия бесконечно велика и интеграл (1.54) расходится. Задание спектра амплитуд невозможно. Однако средняя мощность Рср, определяемая соотношением

оказывается конечной. Поэтому применяется более широкое понятие "спектральная плотность мощности". Определим ее как производную средней мощности сигнала по частоте и обозначим Сk(щ):

Индексом k подчеркивается, что здесь мы рассматриваем спектральную плотность мощности как характеристику детерминированной функции u(t), описывающей реализацию сигнала.

Эта характеристика сигнала менее содержательна, чем спектральная плотность амплитуд, так как лишена фазовой информации [см. (1.38)]. Поэтому однозначно восстановить по ней исходную реализацию сигнала невозможно. Однако отсутствие фазовой информации позволяет применить это понятие к сигналам, у которых фаза не определена.

Для установления связи между спектральной плотностью Сk(щ) и спектром амплитуд воспользуемся сигналом u(t), существующим на ограниченном интервале времени (-T<. t

где - спектральная плотность мощности сигнала, ограниченного во времени.

В дальнейшем будет показано (см. § 1.11), что, усредняя эту характеристику по множеству реализаций, можно получить спектральную плотность мощности для большого класса случайных процессов.

Функция автокорреляции детерминированного сигнала

Теперь в частотной области имеется две характеристики: спектральная характеристика и спектральная плотность мощности. Спектральной характеристике, содержащей полную информацию о сигнале u(t), соответствует преобразование Фурье в виде временной функции. Выясним, чему соответствует во временной области спектральная плотность мощности, лишенная фазовой информации.

Следует предположить, что одной и той же спектральной плотности мощности соответствует множество временных функций, различающихся фазами. Советским ученым Л.Я. Хинчиным и американским ученым Н. Винером практически одновременно было найдено обратное преобразование Фурье от спектральной плотности мощности:


Обобщенную временную функцию r(), не содержащую фазовой информации, назовем временной автокорреляционной функцией. Она показывает степень связи значений функции u(t), разделенных интервалом времени, и может быть получена из статистической теории путем развития понятия коэффициента корреляции. Отметим, что во временной функции корреляции усреднение проводится по времени в пределах одной реализации достаточно большой продолжительности.

Справедливо и второе интегральное соотношение для пары преобразования Фурье:

Пример 1.6 Определить временную функцию· автокорреляции гармонического сигнала u(t) = u0 cos(t-ц). В соответствии с (1.64)

Проведя несложные преобразования


окончательно имеем

Как и следовало ожидать, ru() не зависит от ц и, следовательно, (1.66) справедливо для целого множества гармоник, различающихся фазами.

Обзор