Преобразование сигналов в линейных цепях и системах. Преобразование сигналов линейными цепями с постоянными параметрами. Прохождение сигналов через резистивные параметрические цепи

Классический метод анализа процессов в линейных цепях часто оказывается связанным с необходимостью проведения громоздких преобразований.

Альтернативой классическому методу является операторный (операционный) метод. Его сущность состоит в переходе посредством интегрального преобразования над входным сигналом от дифференциального уравнения к вспомогательному алгебраическому (операционному) уравнению. Затем находится решение этого уравнения, из которого с помощью обратного преобразования получают решение исходного дифференциального уравнения.

В качестве интегрального преобразования наиболее часто используют преобразование Лапласа, которое для функции s (t ) дается формулой:

где p - комплексная переменная: . Функция s(t ) называется оригиналом, а функция S (p ) - ее изображением.

Обратный переход от изображения к оригиналу осуществляется с помощью обратного преобразования Лапласа

Выполнив преобразование Лапласа обеих частей уравнения (*), получим:

Отношение изображений Лапласа выходного и входного сигналов носит название передаточной характеристики (операторного коэффициента передачи) линейной системы:

Если передаточная характеристика системы известна, то для нахождения выходного сигнала по заданному входному сигналу необходимо:

· - найти изображение Лапласа входного сигнала;

· - найти изображение Лапласа выходного сигнала по формуле

· - по изображению S вых (p ) найти оригинал (выходной сигнал цепи).

В качестве интегрального преобразования для решения дифференциального уравнения может использоваться также преобразование Фурье, являющееся частным случаем преобразования Лапласа, когда переменная p содержит только мнимую часть. Отметим, что для того чтобы к функции можно было применить преобразование Фурье, она должна быть абсолютно интегрируемой. Это ограничение снимается в случае преобразования Лапласа.

Как известно, прямое преобразование Фурье сигнала s (t ), заданного во временной области, является спектральной плотностью этого сигнала:

Выполнив преобразование Фурье обеих частей уравнения (*), получим:


Отношение изображений Фурье выходного и входного сигналов, т.е. отношение спектральных плотностей выходного и входного сигналов, называется комплексным коэффициентом передачи линейной цепи:

Если комплексный коэффициент передачи линейной системы известен, то нахождение выходного сигнала для заданного входного сигнала производят в следующей последовательности:

· определяют с помощью прямого преобразования Фурье спектральную плотность входного сигнала;

· определяют спектральную плотность выходного сигнала:

· с помощью обратного преобразования Фурье находят выходной сигнал, как функцию времени

Если для входного сигнала существует преобразование Фурье, то комплексный коэффициент передачи может быть получен из передаточной характеристики заменой р на j .

Анализ преобразования сигналов в линейных цепях с использованием комплексного коэффициента передачи называется методом анализа в частотной области (спектральным методом).

На практике К (j ) часто находят методами теории цепей на основании принципиальных схем, не прибегая к составлению дифференциального уравнения. Эти методы базируются на том, что при гармоническом воздействии комплексный коэффициент передачи может быть выражен в виде отношения комплексных амплитуд выходного и входного сигналов

линейный цепь сигнал интегрирующий


Если входной и выходной сигналы являются напряжениями, то K (j ) является безразмерным, если соответственно током и напряжением, то K (j ) характеризует частотную зависимость сопротивления линейной цепи, если напряжением и током, то - частотную зависимость проводимости.

Комплексный коэффициент передачи K (j ) линейной цепи связывает между собой спектры входного и выходного сигналов. Как и любая комплексная функция, он может быть представлен в трех формах (алгебраической, показательной и тригонометрической):

где - зависимость от частоты модуля

Зависимость фазы от частоты.

В общем случае комплексный коэффициент передачи можно изобразить на комплексной плоскости, откладывая по оси действительных величин, - по оси мнимых значений. Полученная при этом кривая называется годографом комплексного коэффициента передачи.

На практике большей частью зависимости К () и k () рассматриваются отдельно. При этом функция К () носит название амплитудно-частотной характеристики (АЧХ), а функция k () - фазо-частотной характеристики (ФЧХ) линейной системы. Подчеркнем, что связь между спектром входного и выходного сигналов существует только в комплексной области.

Прохождение сигналов через резистивные параметрические цепи. Преобразование частоты

12.1 (О). Идеальный источник ЭДС создает напряжение (В)и = 1.5 cos 2π · l0 7 t . К зажимам источника подключен резистивный элемент с переменной во времени проводимостью (См)G (t ) = 10 -3 + 2 · 10 -4 sin 2π · l0 6 t . Найдите амплитуду токаI т , имеющего частоту 9.9 МГц.

12.2(О). Вещательный приемник длинноволнового диапазона предназначен для приема сигналов в диапазоне частот отf c min = 150 кГц доf c max = 375 кГц. Промежуточная частота приемникаf пр = 465 кГц. Определите, в каких пределах следует перестраивать частоту гетеродинаf г данного приемника.

12.3(УО). В супергетеродинном приемнике гетеродин создает гармонические колебания с частотойf г = 7.5 МГц. Промежуточная частота приемникаf пр = 465 кГц; из двух возможных частот принимаемого сигнала основному каналу приема отвечает большая, а зеркальному каналу - меньшая частота. Для подавления зеркального канала на входе преобразователя частоты включен одиночный колебательный контур, настроенный на частоту основного канала. Найдите значение добротностиQ этого контура, при которой ослабление зеркального канала составит - 25 дБ по отношению к основному каналу приема.

12.4(О). Дифференциальная крутизна резистивного параметрического элемента, входящего в преобразователь частоты, изменяется по законуS диф (t ) =S 0 +S 1 cosω г t , гдеS 0 ,S 1 - постоянные числа,ω г - угловая частота гетеродина. Считая, что промежуточная частотаω пр известна, найдите частоты сигналаω с, при которых возникает эффект на выходе преобразователя.

12.5(Р). Проходная характеристика полевого транзистора, т.е. зависимость тока стокаi c (мА) от управляющего напряжения затвор - истоки зи (В) прии зи ≥ -2 В, аппроксимирована квадратичной параболой:i с = 7.5(u зи + 2) 2 . Ко входу транзистора приложено напряжение гетеродинаи зи =U m г cosω г t . Найдите закон изменения во времени дифференциальной крутизныS диф (t ) характеристикиi с =f (и зи).

12.6(УО). Применительно к условиям задачи 12.5 выберите амплитуду напряжения гетеродинаU m г таким образом, чтобы обеспечить крутизну преобразованияS пр = 6 мА/В.

12.7(О). В преобразователе частоты использован полупроводниковый диод, ВАХ которого описана зависимостью (мА)

К диоду приложено напряжение гетеродина (В) u г = 1.2 cosω г t . Вычислите крутизну преобразованияS пр данного устройства.

12.8(УО). В диодном преобразователе частоты, который описан в задаче 12.7, к диоду приложено напряжение (В)u (t ) =U 0 + 1.2 cosω г t . Определите,

при каком напряжении смещенияU 0 < 0 крутизна преобразования составит величину 1.5 мА/В.

12.9(УО). Схема преобразователя частоты на полевом транзисторе изображена на рис. I.12.1. Колебательный контур настроен на промежуточную частотуω пр = |ω с -ω г |. Резонансное сопротивление контураR рез = 18 кОм. Ко входу преобразователя приложена сумма напряжения полезного сигнала (мкВ)u с (t ) = 50 cosω c t и напряжения гетеродина (В)u г (t ) = 0.8 cosω г t . Характеристика транзистора описана в условиях задачи 12.5. Найдите амплитудуU m пр выходного сигнала на промежуточной частоте.

Прохождение сигналов через параметрические реактивные цепи. Параметрические усилители

12.10(Р). Дифференциальная емкость параметрического диода (варактора) в окрестности рабочей точкиU 0 зависит от приложенного напряженияи следующим образом:С диф (u ) =b 0 +b 1 (u -U 0), гдеb 0 (пФ) иb 1 (пФ/В) - известные числовые коэффициенты. К варактору приложено напряжениеu =U 0 +U m cosω 0 t . Получите формулу, описывающую токi (t ) через варактор.

12.11(УО). Дифференциальная емкость варактора описана выражениемC диф (u ) =b 0 +b 1 (u -U 0) +b 2 (u -U 0) 2 . К зажимам варактора приложено напряжениеu =U 0 +U m cosω 0 t . Вычислите амплитудуI 3 третьей гармоники тока через варактор, еслиf 0 = 10 ГГц,U m =1.5 В,b 2 = 0.16 пФ/В 2 .

12.12(О). Варактор имеет параметры:b 0 = 4 пФ,b 2 = 0.25 пФ/В 2 . К варактору приложено высокочастотное напряжение с амплитудойU m = 0.4 В. Определите, во сколько раз возрастет амплитуда первой гармоники токаI 1 если величинаU m станет равной 3 В.

12.13(УО). Емкость параметрического конденсатора изменяется во времени по законуС (t ) =С 0 ехр (-t /τ) σ (t ), гдеС 0 , τ - постоянные величины. К конденсатору подключен источник линейно нарастающего напряженияu (t ) =at σ(t ). Вычислите закон изменения во времени токаi (t ) в конденсаторе.

12.14(УО). Применительно к условиям задачи 12.13 найдите момент времениt 1 , в который мгновенная мощность, потребляемая конденсатором из источника сигнала, максимальна, а также момент времениt 2 , в который максимальной оказывается мощность, отдаваемая конденсатором во внешние цепи.

12.15(Р). Одноконтурный параметрический усилитель подключен со стороны входа к источнику ЭДС (генератору) с внутренним

сопротивлениемR г = 560 Ом. Усилитель работает на резистивную нагрузку с сопротивлениемR н = 400 Ом. Найдите величину вносимой проводимостиG вн, которая обеспечивает коэффициент усиления мощностиК Р = 25 дБ.

12.16(О). Для параметрического усилителя, описанного в задаче 12.15, найдите критическую величину вносимой проводимостиG вн кр, при которой система оказывается на пороге самовозбуждения.

12.17(УО). К зажимам управляемого параметрического конденсатора приложено напряжение сигналаu (t ) =U m cos(ω c t +π/3). Емкость конденсатора изменяется во времени по законуC (t ) =C 0 " гдеφ н - начальный фазовый угол колебания накачки. Выберите наименьшее по модулю значениеφ н, которое обеспечивает нулевое значение вносимой проводимости.

12.18(О). Применительно к условиям задачи 12.17 для значений параметровС 0 = 0.3 пФ, β = 0.25 иω с = 2π · 10 9 с -1 вычислите наибольшее по модулю значение отрицательной проводимостиG вн max , а также наименьший по модулю фазовый уголсра, обеспечивающий такой режим.

12.19(Р). Двухконтурный параметрический усилитель предназначен для работы на частотеf с = 2 ГГц. Холостая частота усилителяf хол = 0.5 ГГц. Использованный в усилителе варактор изменяет свою емкость (пФ) с частотой накачкиω н по законуС (t ) = 2(1 + 0.15 cosω н t ). Источник сигнала и устройство нагрузки имеют одинаковые активные проводимостиG г =G н = 2 · 10 -3 См. Вычислите величину резонансного сопротивления холостого контураR рез.хол, при котором в усилителе возникает самовозбуждение.

В нелинейных электрических цепях связь между входным сигналом U Вх. (T ) и выходным сигналом U Вых. (T ) описывается нелинейной функциональной зависимостью

Такую функциональную зависимость можно рассматривать как математическую модель нелинейной цепи.

Обычно нелинейная электрическая цепь представляет совокупность линейных и нелинейных двухполюсников. Для описания свойств нелинейных двухполюсников часто пользуются их вольтамперными характеристиками (ВАХ). Как правило, ВАХ нелинейных элементов получают экспериментально. В результате эксперимента ВАХ нелинейного элемента получают в виде таблицы. Этот способ описания пригоден для анализа нелинейных цепей с помощью ЭВМ.

Для изучения процессов в цепях, содержащих нелинейные элементы, необходимо отобразить ВАХ в математической форме, удобной для расчетов. Для использования аналитических методов анализа требуется подобрать аппроксимирующую функцию, достаточно точно отражающую особенности экспериментально снятой характеристики. Чаще всего используются следующие способы аппроксимации ВАХ нелинейных двухполюсников.

Показательная аппроксимация. Из теории работы p-n перехода следует, что вольт-амперная характеристика полупроводникового диода при u>0 описывается выражением

. (7.3)

Показательную зависимость часто используют при изучении нелинейных цепей, содержащих полупроводниковые приборы. Аппроксимация вполне точна при значениях тока, не превышающих несколько миллиампер. При больших токах экспоненциальная характеристика плавно переходит в прямую линию из-за влияния объемного сопротивления полупроводникового материала.

Степенная аппроксимация. Этот способ основан на разложении нелинейной вольтамперной характеристики в ряд Тейлора, сходящийся в окрестности рабочей точки U 0 :

Здесь коэффициенты …. – некоторые числа, которые можно найти из полученной экспериментально вольтамперной характеристики. Количество членов разложения зависит от требуемой точности расчетов.

Пользоваться степенной аппроксимацией при больших амплитудах сигналов нецелесообразно из-за существенного ухудшения точности.

Кусочно-линейная аппроксимация Применяется в случаях, когда в схеме действуют большие сигналы. Способ основан на приближенной замене реальной характеристики отрезками прямых линий с различными наклонами. Например, передаточная характеристика реального транзистора может быть аппроксимирована тремя отрезками прямых, как показано на рис.7.1.

Рис.7.1 .Передаточная характеристика биполярного транзистора

Аппроксимация определяется тремя параметрами: напряжением начала характеристики , крутизной , имеющей размерность проводимости и напряжением насыщения , при котором возрастание тока прекращается. Математическая запись аппроксимированной характеристики такова:

(7.5)

Во всех случаях ставится задача нахождения спектрального состава тока, обусловленного воздействием на нелинейную цепь гармонических напряжений. При кусочно-линейной аппроксимации схемы анализируют методом угла отсечки.

Рассмотрим для примера работу нелинейной цепи при больших сигналах. В качестве нелинейного элемента используем биполярный транзистор, работающий с отсечкой коллекторного тока. Для этого при помощи начального напряжения смещения Е См рабочая точка устанавливается таким образом, чтобы транзистор работал с отсечкой коллекторного тока, и одновременно подадим на базу входной гармонический сигнал.

Рис.7.2. Иллюстрация отсечки тока при больших сигналах

Угол отсечки θ – половина той части периода, в течение которой коллекторный ток не равен нулю, или, другими словами, часть периода от момента достижения коллекторным током максимума до момента, когда ток становится равным нулю – «отсекается».

В соответствии с обозначениями на рис.7.2 коллекторный ток для I > 0 описывается выражением

Разложение этого выражения в ряд Фурье позволяет найти постоянную составляющую I 0 и амплитуды всех гармоник коллекторного тока. Частоты гармоник кратны частоте входного сигнала, а относительные амплитуды гармоник зависят от угла отсечки. Анализ показывает, что для каждого номера гармоники существует оптимальный угол отсечки θ, При котором ее амплитуда максимальна:

. (7.7)

Рис.7.8 . Схема умножения частоты

Подобные схемы (рис.7.8) часто применяются для умножения частоты гармонического сигнала в целое число раз. Настройкой колебательного контура, включенного в коллекторную цепь транзистора, можно выделить нужную гармонику исходного сигнала. Угол отсечки устанавливается, исходя из максимального значения амплитуды заданной гармоники. Относительная амплитуда гармоники уменьшается с ростом ее номера. Поэтому описанный метод применим при коэффициентах умножения N ≤ 4. Применяя многократное умножение частоты, можно на основе одного высокостабильного генератора гармонических колебаний получить набор частот с такой же относительной нестабильностью частоты, как у основного генератора. Все эти частоты кратны частоте входного сигнала.

Свойство нелинейной цепи обогащать спектр, создавая на выходе спектральные составляющие, первоначально отсутствовавшие на входе, ярче всего проявляются, если входной сигнал представляет собой сумму нескольких гармонических сигналов с различными частотами. Рассмотрим случай воздействия на нелинейную цепь суммы двух гармонических колебаний. Вольтамперную характеристику цепи представим многочленом 2-й степени:

. (7.8)

Входное напряжение помимо постоянной составляющей содержит два гармонических колебания с частотами и , амплитуды которых равны и соответственно:

. (7.9)

Такой сигнал называется бигармоническим. Подставив этот сигнал в формулу (7.8), выполнив преобразования и сгруппировав члены, получим спектральное представление тока в нелинейном двухполюснике:

Видно, что в спектре тока присутствуют слагаемые, входящие в спектр входного сигнала, вторые гармоники обоих источников входного сигнала а также гармонические составляющие с частотами ω1 ω2 и ω1 + ω2 . Если степенное разложение вольтамперной характеристики представлено многочленом 3-й степени, спектр тока будет содержать также частоты . В общем случае при воздействии на нелинейную цепь нескольких гармонических сигналов с разными частотами в спектре тока появляются комбинационные частоты

Где – любые целые числа, положительные и отрицательные, включая нуль.

Возникновение комбинационных составляющих в спектре выходного сигнала при нелинейном преобразовании обусловливает ряд важных эффектов, с которыми приходится сталкиваться при построении радиоэлектронных устройств и систем. Так, если один из двух входных сигналов промодулирован по амплитуде, то происходит перенос модуляции с одной несущей частоты на другую. Иногда за счет нелинейного взаимодействия наблюдается усиление или подавление одного сигнала другим.

На основе нелинейных цепей осуществляется детектирование (демодуляция) амплитудно-модулированных (АМ) сигналов в радиоприемниках. Схема амплитудного детектора и принцип его работы поясняются на рис.7.9.

Рис.7.9. Схема амплитудного детектора и форма выходного тока

Нелинейный элемент, вольтамперная характеристика которого аппроксимирована ломаной линией, пропускает только одну (в данном случае положительную) полуволну входного тока. Эта полуволна создает на резисторе импульсы напряжения высокой (несущей) частоты с огибающей, воспроизводящей форму огибающей амплитудно-модулированного сигнала. Спектр напряжения на резисторе содержит частоту несущей , ее гармоники и низкочастотную составляющую, которая примерно вдвое меньше амплитуды импульсов напряжения. Эта составляющая имеет частоту , равную частоте огибающей, т. е. представляет собой продетектированный сигнал. Конденсатор совместно с резистором образует фильтр низких частот. При выполнении условия

(7.12)

В спектре выходного напряжения остается только частота огибающей. При этом также происходит увеличение выходного напряжения за счет того, что при положительной полуволне входного напряжения конденсатор быстро заряжается через малое сопротивление открытого нелинейного элемента почти до амплитудного значения входного напряжения, а при отрицательной полуволне – не успевает разрядиться через большое сопротивление резистора . Приведенное описание работы амплитудного детектора соответствует режиму большого входного сигнала, при котором ВАХ полупроводникового диода аппроксимируется ломаной прямой.

В режиме малого входного сигнала начальный участок ВАХ диода может быть аппроксимирован квадратичной зависимостью. При подаче на такой нелинейный элемент амплитудно-модулированного сигнала, спектр которого содержит несущую и боковые частоты, возникают частоты с суммарной и разностной частотами. Разностная частота представляет собой продетектированный сигнал, а несущая и суммарная частоты не проходят через фильтр низких частот, образованный элементами и .

Обычный прием детектирования частотно-модулированных (ЧМ) колебаний состоит в том, что ЧМ колебание сначала преобразуется в АМ колебание, которое затем детектируется вышеописанным способом. В качестве простейшего преобразователя ЧМ в АМ может служить расстроенный относительно несущей частоты колебательный контур. Принцип преобразования ЧМ сигналов в АМ поясняется на рис.7.10.

Рис.7.10. Преобразование ЧМ в АМ

При отсутствии модуляции рабочая точка находится на скате резонансной кривой контура. При изменении частоты изменяется амплитуда тока в контуре, т. е. происходит преобразование ЧМ в АМ.

Схема преобразователя ЧМ в АМ показана на рис.7.11.

Рис.7.11. Преобразователь ЧМ в АМ

Недостатком такого детектора являются искажения продетектированного сигнала, возникающие из-за нелинейности резонансной кривой колебательного контура. Поэтому на практике применяются симметричные схемы, обладающие лучшими характеристиками. Пример такой схемы приведен на рис.7.12.

Рис.7.12. Детектор ЧМ сигналов

Два контура настраиваются на крайние значения частоты, т. е. на частоты И . Каждый из контуров преобразует ЧМ в АМ, как описано выше. АМ колебания детектируются соответствующими амплитудными детекторами. Низкочастотные напряжения и противоположны по знаку, и с выхода схемы снимается их разность. Характеристика детектора, т. е. зависимость выходного напряжения от частоты, получается путем вычитания двух резонансных кривых и более линейна. Такие детекторы называются дискриминаторами (различителями).

Пусть на входе линейного четырехполюсника (рис. 7.1) с передаточной функцией и импульсной характеристикой действует случайный процесс с заданными статистическими характеристиками; требуется найти статистические характеристики процесса на выходе четырехполюсника.

В гл. 4 были рассмотрены основные характеристики случайного процесса: распределение вероятностей; корреляционная функция; спектральная плотность мощности.

Определение последних двух характеристик является наиболее простой задачей. Иначе обстоит дело с определением закона распределения случайного процесса на выходе линейной цепи. В общем случае при произвольном распределении процесса на входе отыскание распределения на выходе инерционной цепи представляет собой весьма сложную задачу.

Рис. 7.1. Линейный четырехполюсник с постоянными параметрами

Лишь при нормальном распределении входного процесса задача упрощается, так как при любых линейных операциях с гауссовским процессом (усилении, фильтрации, дифференцировании, интегрировании и т. д.) распределение остается нормальным, изменяются лишь функции .

Поэтому, если задана плотность вероятности входного процесса (с нулевым средним)

то плотность вероятности на выходе линейной цепи

Дисперсия легко определяется по спектру или по корреляционной функции. Таким образом, анализ передачи гауссовских процессов через линейные цепи по существу сводится к спектральному (или корреляционному) анализу.

Последующие четыре параграфа посвящены преобразованию только спектра и корреляционной функции случайного процесса. Это рассмотрение справедливо при любом законе распределения вероятностей. Вопрос же о преобразовании закона распределения при негауссовских входных процессах рассматривается в § 7.6-7.7.


Чтобы преобразовать входной сигнал в удобную для хранения, воспроизведения и управления форму, необходимо обосновать требования к параметрам систем преобразования сигнала. Для этого надо математически описать связь между сигналами на входе, выходе системы и параметрами системы.

В общем случае система преобразования сигнала является нелинейной: при вхождении в нее гармонического сигнала на выходе системы возникают гармоники других частот. Параметры нелинейной системы преобразования зависят от параметров входного сигнала. Общей теории нелинейности не существует . Одним из способов описать связь между входным E вх (t ) и выходным E вых (t ) сигналами и параметром K нелинейности системы преобразования является следующий:

(1.19)

где t и t 1 – аргументы в пространстве выходного и входного сигналов соответственно.

Нелинейность системы преобразования определяется видом функции K .

Чтобы упростить анализ процесса преобразований сигнала, используют допущение о линейности систем преобразований. Это допущение применимо к нелинейным системам, если сигнал имеет малую амплитуду гармоник, либо когда систему можно рассматривать как совокупность линейного и нелинейного звеньев. Примером такой нелинейной системы являются светочувствительные материалы (подробный анализ их преобразующих свойств будет сделан ниже).

Рассмотрим преобразование сигнала в линейных системах. Система называется линейной , если ее реакция на одновременное воздействие нескольких сигналов равна сумме реакций, вызываемых каждым сигналом, действующим отдельно , т. е. выполняется принцип суперпозиции :

где t , t 1 – аргументы в пространстве выходного и входного сигналов соответственно;

E 0 (t , t 1) – импульсная реакция системы.

Импульсной реакцией системы называется выходной сигнал, если на вход подан сигнал, описываемый дельта-функцией Дирака. Эту функцию δ(x ) определяют тремя условиями:

δ(t ) = 0 при t ≠ 0; (1.22)
(1.23)
δ(t ) = δ(–t ). (1.24)

Геометрически она совпадает с положительной частью вертикальной оси координат, т. е. имеет вид луча, выходящего вверх из начала координат. Физической реализацией дельта-функции Дирака в пространстве является точка с бесконечной яркостью, во времени – бесконечно короткий импульс бесконечно большой интенсивности, в спектральном пространстве – бесконечно сильное монохроматическое излучение.

Дельта-функция Дирака обладает следующими свойствами:

(1.25)
(1.26)

Если импульс происходит не на нулевом отсчете, а при значении аргумента t 1 , то такую "сдвинутую" на t 1 дельта-функцию можно описать как δ(t t 1).

Чтобы упростить выражение (1.21), связывающее выходной и входной сигналы линейной системы, принимают допущение о нечувствительности (инвариантности) линейной системы к сдвигу. Линейная система называется нечувствительной к сдвигу , если при сдвиге импульса импульсная реакция изменяет только свое положение, но не изменяет своей формы , т. е. удовлетворяет равенству:

E 0 (t , t 1) = E 0 (t t 1). (1.27)

Рис. 1.6. Нечувствительность импульсной реакции систем

или фильтров к сдвигу

Оптические системы, являясь линейными, чувствительны к сдвигу (не инвариантны): распределение, освещенность и размер "кружка" (в общем случае не являющегося кругом) рассеяния зависят от координаты в плоскости изображения. Как правило, в центре поля зрения диаметр "кружка" меньше, а максимальное значение импульсной реакции больше, чем по краям (рис.1.7).

Рис. 1.7. Чувствительность импульсной реакции к сдвигу

Для нечувствительных к сдвигу линейных систем выражение (1.21), связывающее входной и выходной сигналы, приобретает более простой вид:

Из определения свертки следует возможность представить выражение (1.28) в несколько ином виде:

что для рассматриваемых преобразований дает

(1.32)

Таким образом, зная сигнал на входе линейной и инвариантной к сдвигу системы, а также импульсную реакцию системы (отклик ее на единичный импульс), по формулам (1.28) и (1.30) можно математически определить сигнал на выходе системы, не реализуя физически саму систему.

К сожалению, из указанных выражений невозможно непосредственно найти одну из подынтегральных функций E вх (t ) или E 0 (t ) по второй и известному выходному сигналу.

Если линейная, нечувствительная к сдвигу система состоит из нескольких, последовательно пропускающих сигнал фильтрующих звеньев, то импульсная реакция системы представляет собой свертку импульсных реакций составляющих фильтров, что в сокращенном виде можно записать как

что соответствует сохранению неизменного значения постоянной составляющей сигнала при фильтрации (это станет очевидным при анализе фильтрации в частотной области).

Пример . Рассмотрим преобразование оптического сигнала при получении на светочувствительном материале миры с косинусоидальным распределением интенсивности. Мирой называется решетка или ее изображение, состоящие из группы полос определенной ширины. Распределение яркости в решетке обычно имеет прямоугольный или косинусоидальный характер. Миры необходимы для экспериментального изучения свойств фильтров оптических сигналов.

Схема устройства для записи косинусоидальной миры представлена на рис. 1.8.

Рис. 1.8. Схема устройства для получения миры
с косинусоидальным распределением интенсивности

Равномерно перемещающуюся со скоростью v фотопленку 1 освещают через щель 2 шириной A. Изменение освещенности во времени производится по косинусоидальному закону. Это достигается за счет прохождения светового пучка через осветительную систему 3 и два поляроидных фильтра 4 и 5. Поляроидный фильтр 4 равномерно вращается, фильтр 5 неподвижен. Вращение оси подвижного поляризатора относительно неподвижного обеспечивает косинусоидальное изменение интенсивности проходящего светового пучка. Уравнение изменения освещенности E (t ) в плоскости щели имеет вид:

Фильтрами в рассматриваемой системе являются щель и фотопленка. Так как подробный анализ свойств светочувствительных материалов будет приведен ниже, то проанализируем только фильтрующее действие щели 2. Импульсную реакцию E 0 (х ) щели 2 шириной A можно представить в виде:

(1.41)

то окончательный вид уравнения сигнала на выходе щели следующий:

Сравнение Е вых (x ) и Е вх (x ) показывает, что они отличаются лишь наличием множителя в переменной части. График функции типа sinc представлен на рис. 1.5. Она характеризуется осциллирующим с постоянным периодом убыванием от 1 до 0.

Следовательно, при увеличении значения аргумента этой функции, т. е. при росте произведения w 1 A и уменьшении v , амплитуда переменной составляющей сигнала на выходе падает.

Кроме того, эта амплитуда будет обращаться в нуль, когда

Это имеет место при

Где n = ±1, ±2…

В таком случае вместо миры на пленке получится равномерное почернение.

Изменения постоянной составляющей сигнала а 0 не произошло, т. к. импульсная реакция щели здесь являлась нормированной в соответствии с условием (1.37).

Таким образом, регулируя параметры записи миры v , A , w 1 , можно подобрать оптимальную для данного светочувствительного материала амплитуду переменной составляющей освещенности, равную произведению a sinc ((w 1 A )/(2v )), и предотвратить брак.

Настройка