Виды сигналов бывают. Виды (типы) сигналов — аналоговый. Операции с данными

Что такое электрический сигнал и с чем его едят? Давайте обсудим в этой статье.

Сигнал – это что-то такое, что можно передать через пространство и время. Итак, какие условия должны быть, чтоб назвать сигнал “сигналом”?

Во-первых, сигнал должен кем-либо создаваться (генерироваться).

Во-вторых, сигнал должен для кого предназначаться.

В-третьих, кто-то должен принять этот сигнал и сделать для себя какие-либо выводы, то есть правильно трактовать сигнал.

Окунемся в Дикий Запад.

Думаю, не секрет, что индейцы разжигали костер, и дым от костра использовался для передачи сигнала. Значит, в нашем случае костер – генератор сигнала. Итак, первый пункт работает). Для кого же был предназначен дым от костра? Для ковбоев? Конечно же нет! Для своих же индейцев. Значит, работает пункт два. Ну ладно, вы увидели два столба дыма, возвышающихся в небо. Вам это что-то говорит? Кто-то, наверное, жарит шашлыки? Может быть. Но если вы подойдете к этим кострам, то шашлык сделают именно из вас). Для индейцев эти два столба дыма означали, что их отряд благополучно поохотился на ковбоев;-). Ну вот и выполнилось третье правило;-).

Но что же из себя представляет электрический сигнал? Терзают меня смутные сомнения, что где-то здесь замешан электрический ток :-). Чем характеризуется электрический ток? Ну конечно же, напряжением и силой тока . Самое примечательное, что электрический ток очень удобно передавать через пространство с помощью проводов. В этом случае его скорость распространения будет равна скорости света. Хотя и электроны в проводнике движутся со скоростью всего несколько миллиметров в секунду, электрические поле охватывает сразу весь провод со скоростью света! А как вы помните, скорость света равна 300 000 километров в секунду! Поэтому, электрон на другом конце провода практически сразу придет в движение.

Передача электрических сигналов

Итак, для передачи сигнала через пространство мы будем использовать провода. Чуть выше мы разобрали условия возникновения сигнала. Значит, первым делом, нам нужен генератор этих сигналов! То есть это может быть какая-либо батарея или схемка, которая бы генерировала электрический ток. Далее, должен быть кто-то, кто бы принимал этот сигнал. Это может быть какая-нибудь нагрузка, типа лампочки, нагревательного элемента или целой схемы, которая бы принимала этот сигнал. Ну и в-третьих, нагрузка должна как-то среагировать на этот сигнал. Лампочка должна источать свет, нагревательный элемент – греться, а схема исполнять какую-либо функцию.

Как вы поняли из всего выше сказанного, главный козырь сигнала – это его генератор. Итак, как мы уже разобрали, по проводам можно передавать два параметра электрического тока это напряжение и сила тока . То есть мы можем создать генератор, который бы менял или свое напряжение или силу тока в нагрузке, которая бы цеплялась через провода к этому генератору. В основном в электронике используют именно параметр “напряжение”, так как напряжение легко получить и менять его значение.

Время и электрический сигнал

Как я уже сказал, сигнал передается во времени и в пространстве. То есть время – важный параметр для электрического сигнала. Сейчас нам придется немного попотеть и вспомнить курс математики и физики за среднюю школу. Вспоминаем декартову систему координат. Как вы помните, по вертикали мы откладывали ось Y, по горизонтали Х:

В электронике и электротехнике по Х мы откладываем время, назовем его буквой t, а по вертикали мы отложим напряжение, обозначим его буквой U. В результате наша система координат будет выглядеть вот таким образом:

Прибор, который показывает нам изменение напряжения во времени называется осциллографом , а график этого напряжения называется осциллограммой . Осциллограф может быть :


или аналоговым :


Виды электрических сигналов

Постоянный ток

Какой же электрический сигнал является самым простым сигналом в электронике? Я думаю, это сигнал постоянного тока . А что значит постоянный ток? Это ток, значение напряжения которого не меняется с течением времени.Как же он выглядит на нашем графике? Примерно вот так:

Здесь мы видим сигнал постоянного тока в 3 вольта.

По вертикали у нас напряжение в вольтах, а по горизонтали – ну, скажем, в секундах. Постоянный ток с течением времени всегда имеет одно и то же значение напряжения, поэтому, неважно, в секундах или в часах у нас идет отсчет по времени. Напряжение ни прыгнуло, ни упало. Оно как было 3 Вольта, так и осталось. То есть можно сказать, что сигнал постоянного тока представляет из себя прямую линию, параллельную оси времени t.

Вот так выглядит сигнал постоянного тока на аналоговом осциллографе


Какие же генераторы электрического тока могут выдать такой сигнал постоянного напряжения?

Это, конечно же различные батарейки


аккумуляторы для мобильного телефона


для ноутбука


автомобильные аккумуляторы


и другие химические источники тока.

В лабораторных условиях проще получить постоянное напряжение из переменного . Прибор, который это умеет делать, называется лабораторным блоком питания постоянного напряжения.


Шумовой сигнал или просто шум

А что будет, если напряжение будет принимать хаотическое значение? Получится что-то типа этого:


Такой электрический сигнал называется шумом .

Думаю, некоторые из вас впервые видят осциллограмму шума, но я уверен на 100%, что все слышали звучание этого сигнала;-). Ну-ка нажмите на Play ;-)

Шипение радиоприемника или старого ТВ, не настроенного на станцию или на какой-нибудь канал – это и есть шум;-) Как бы странно это не звучало, но такой сигнал тоже очень часто используется в электронике. Например, можно собрать схемку глушителя частот, который бы гасил все телевизионные и радиоприемники в радиусе километра). То есть генерируем шумовой сигнал, усиливаем его и подаем в эфир;-) В результате глушим всю приемопередающую аппаратуру.

Синусоидальный сигнал

Синусоидальный сигнал – самый любимый сигнал среди электронщиков.

Все любят качаться на качелях?


Здесь мы видим девочку, которая с радостью на них качается. Но предположим, она не знает фишку, что можно раскачаться самой, вовремя сгибая и разгибая ноги. Поэтому, пришел папа девочки и толкнул дочку вперед.

Ниже на графике как раз показан этот случай


Как вы видите, траектория движения девочки во времени получилась очень забавной. Такой график движения носит название “синусоида “. В электронике такой сигнал называют синусоидальным . Вроде бы до боли самый простой график, но вы не поверите, именно на такой простой синусоиде строится вся электроника.

Так как синусоидальный сигнал повторяет свою форму на протяжении всего времени, то его можно назвать периодическим. То есть вы периодически обедаете – периодами – равными отрезками времени. Тут то же самое. Этот сигнал периодически повторяется. Важные параметры периодических сигналов – это амплитуда, период и частота.


Амплитуда (A) – максимальное отклонение напряжения от нуля и до какого-то значения.

Период (T) – время, за которое сигнал снова повторяется. То есть если вы сегодня обедаете в 12:00, завтра тоже в такое же время, в 12:00, и послезавтра тоже в это же самое время, значит ваш обед идет с периодом в 24 часа. Все элементарно и просто;-)

Частота (F) – это просто единичка, поделенная на период, то есть

Измеряется в Герцах. Объясняется как “столько-то колебаний в секунду”. Ну пока для начала хватит;-).

Как я уже сказал, в электронике синусоида играет очень большую роль. Даже не надо далеко ходить. Достаточно сунуть паль… щупы осциллографа в свою домашнюю розетку, и можно уже наблюдать синусоидальный сигнал, частотой в 50 Герц и амплитудой в 310 Вольт.


Прямоугольный сигнал

Очень часто в электронике используется и прямоугольный сигнал:


Прямоугольный сигнал на рисунке ниже, где время паузы и время длительности сигнала равны, называется меандром .


Треугольный сигнал

Близкие друзья синусоидального сигнала – это треугольный сигнал


У треугольного сигнала есть очень близкий кореш – это пилообразный сигнал


Сложный сигнал

В электронике также используются сложные сигналы . Вот, например, один из них (я нарисовал его от балды):


Все эти сигналы относятся к периодическим сигналам , так как для них можно указать период , частоту следования и амплитуду самих сигналов:




Двухполярные сигналы

Для сигналов, которые “пробивают пол”, ну то есть могут иметь отрицательное значение напряжения, типа вот этих сигналов


кроме периода и амплитуды имеют еще один параметр. Называется он размах или двойная амплитуда . На буржуйском языке это звучит как amplitude Peak-to-peak , что в дословном переводе ” амплитуда от пика до пика”.

Вот двойная амплитуда для синусоиды (2А)


а вот для треугольного сигнала:


Чаще всего обозначается как 2А, что говорит нам о том, что это двойная амплитуда сигнала.

Импульсные сигналы

Также существуют сигналы, которые не подчиняются периодическому закону, но тоже играют немаловажную роль в электронике.

Импульсы – это те же самые сигналы, но они не поддаются периодическому закону, и меняют свое значение, в зависимости от ситуации.

Например, вот череда импульсов:


Каждый импульс имеет разную длительность во времени, поэтому мы не можем говорить о какой-то периодичности сигналов.

Звуковой сигнал

Также есть и звуковой сигнал


Хоть он и похож на белый шум, но несет информацию в виде звука. Если такой электрический сигнал подать на динамическую головку, то можно услышать какую-либо запись.

Вывод

В настоящее время электрические сигналы играют очень важную роль в радиоэлектронике. Без них не существовало бы никакой электроники, а тем более цифровой. В настоящее время цифровая электроника достигла своего апогея, благодаря цифровым сигналам и сложной системе кодирования.Скорость передачи данных просто ошеломляющая! Это могут быть гигабайты информации в секунду. А ведь все когда-то начиналось с простого телеграфа…

Аналоговый сигнал является непрерывной функцией непрерывного аргумента, т.е. определен для любого значения независимой переменной. Источниками аналоговых сигналов, как правило, являются физические процессы и явления, непрерывные в своем развитии (динамике изменения значений определенных свойств) во времени, в пространстве или по любой другой независимой переменной, при этом регистрируемый сигнал подобен (аналогичен) порождающему его процессу. Пример математической записи конкретного аналогового сигнала: y (t ) = 4.8exp[-(t -4) 2 /2.8]. Пример графического отображения данного сигнала приведен на Рис. 2.2.1, при этом как числовые величины самой функция, так и ее аргументов, могут принимать любые значения в пределах некоторых интервалов y 1 £ y £ y 2 , t 1 £ t £ t 2 . Если интервалы значений сигнала или его независимых переменных не ограничиваются, то по умолчанию они принимаются равными от -¥ до +¥. Множество возможных значений сигнала образует непрерывное пространство, в котором любая точка может быть определена с бесконечной точностью.

Рис. 2.2.1. Графическое отображение сигнала y (t ) = 4.8 exp[-(t -4) 2 /2.8].

Дискретный сигнал по своим значениям также является непрерывной функцией, но определенной только по дискретным значениям аргумента. По множеству своих значений он является конечным (счетным) и описывается дискретной последовательностью y (n ×Dt ), где y 1 £ y £ y 2 , Dt - интервал между отсчетами (интервал дискретизации сигнала), n = 0, 1, 2, ..., N – нумерация дискретных значений отсчетов. Если дискретный сигнал получен дискретизацией аналогового сигнала, то он представляет собой последовательность отсчетов, значения которых в точности равны значениям исходного сигнала по координатам n Dt .

Пример дискретизации аналогового сигнала, приведенного на Рис. 2.2.1, представлен на Рис. 2.2.2. При Dt = const (равномерная дискретизация данных) дискретный сигнал можно описывать сокращенным обозначением y (n ).

При неравномерной дискретизации сигнала обозначения дискретных последовательностей (в текстовых описаниях) обычно заключаются в фигурные скобки - {s (t i )}, а значения отсчетов приводятся в виде таблиц с указанием значений координат t i . Для коротких неравномерных числовых последовательностей применяется и следующее числовое описание: s (t i ) = {a 1 , a 2 , ..., a N }, t = t 1 , t 2 , ..., t N .

Цифровой сигнал квантован по своим значениям и дискретен по аргументу. Он описывается квантованной решетчатой функцией y n = Q k [y (n Dt )], где Q k - функция квантования с числом уровней квантования k , при этом интервалы квантования могут быть как с равномерным распределением, так и с неравномерным, например - логарифмическим. Задается цифровой сигнал, как правило, в виде числового массива по последовательным значениям аргумента при Dt = const, но, в общем случае, сигнал может задаваться и в виде таблицы для произвольных значений аргумента.



По существу, цифровой сигнал является формализованной разновидностью дискретного сигнала при округлении значений последнего до определенного количества цифр, как это показано на Рис. 2.2.3. В цифровых системах и в ЭВМ сигнал всегда представлен с точностью до определенного количества разрядов и следовательно всегда является цифровым, С учетом этих факторов при описании цифровых сигналов функция квантования обычно опускается (подразумевается равномерной по умолчанию), а для описания сигналов используются правила описания дискретных сигналов.

Рис. 2.2.2. Дискретный сигнал Рис. 2.2.3. Цифровой сигнал

y (n Dt ) = 4.8 exp[-(n Dt -4) 2 /2.8], Dt = 1. y n = Q k , Dt =1, k = 5.

В принципе, квантованным по своим значениям может быть и аналоговый сигнал, зарегистрированный соответствующей цифровой аппаратурой (Рис. 2.2.4). Но выделять эти сигналы в отдельный тип не имеет смысла - они остаются аналоговыми кусочно-непрерывными сигналами с шагом квантования, который определяется допустимой погрешностью измерений.

Большинство дискретных и цифровых сигналов, с которыми приходится иметь дело, являются дискретизированными аналоговыми сигналами. Но существуют сигналы, которые изначально относятся к классу дискретных, например гамма-кванты.

Рис. 2.2.4. Квантованный сигнал y (t ) = Q k , k = 5.

Спектральное представление сигналов. Кроме привычного временного (координатного) представления сигналов и функций при анализе и обработке данных широко используется описание сигналов функциями частоты, т.е. по аргументам, обратным аргументам временного (координатного) представления. Возможность такого описания определяется тем, что любой сколь угодно сложный по своей форме сигнал можно представить в виде суммы более простых сигналов, и, в частности, в виде суммы простейших гармонических колебаний, совокупность которых называется частотным спектром сигнала. Математически спектр сигналов описывается функциями значений амплитуд и начальных фаз гармонических колебаний по непрерывному или дискретному аргументу - частоте . Спектр амплитуд обычно называется амплитудно-частотной характеристикой (АЧХ) сигнала, спектр фазовых углов – фазо-частотной характеристикой (ФЧХ). Описание частотного спектра отображает сигнал так же однозначно, как и координатное описание.

На Рис. 2.2.5 приведен отрезок сигнальной функции, которая получена суммированием постоянной составляющей (частота постоянной составляющей равна 0) и трех гармонических колебаний. Математическое описание сигнала определяется формулой:

где A n = {5, 3, 6, 8} - амплитуда; f n = {0, 40, 80, 120} - частота (Гц); φ n = {0, -0.4, -0.6, -0.8} - начальный фазовый угол (в радианах) колебаний; n = 0,1,2,3.

Рис. 2.2.5. Временное представление сигнала.

Частотное представление данного сигнала (спектр сигнала в виде АЧХ и ФЧХ) приведено на Рис. 2.2.6. Обратим внимание, что частотное представление периодического сигнала s (t ), ограниченного по числу гармоник спектра, составляет всего восемь отсчетов и весьма компактно по сравнению с непрерывным временным представлением, определенным в интервале от -¥ до +¥.

Рис. 2.2.6. Частотное представление сигнала.

Графическое отображение аналоговых сигналов (Рис. 2.2.1) особых пояснений не требует. При графическом отображении дискретных и цифровых сигналов используется либо способ непосредственных дискретных отрезков соответствующей масштабной длины над осью аргумента (Рис. 2.2.6), либо способ огибающей (плавной или ломанной) по значениям отсчетов (пунктирная кривая на Рис. 2.2.2). В силу непрерывности полей и, как правило, вторичности цифровых данных, получаемых дискретизацией и квантованием аналоговых сигналов, второй способ графического отображения будем считать основным.

Виды сигналов

Сигнал

Сигнал – это физический процесс, некоторая характеристика которого несёт информационный смысл.

Например, световой сигнал (поток света) характеризуется яркостью, цветом, поляризационными свойствами, направлением распространения и др.

Информацию может нести как одна из этих характеристик, так и одновременное сочетание нескольких характеристик.

Сигнал возникает в природе при взаимодействии материальных объектов и несёт в себе информацию об этом взаимодействии. Сигнал способен перемещаться, распространяться в некоторой материальной среде, тем самым, обеспечивая пространственный перенос информации от объекта (источника события) к субъекту (наблюдателю). Материальная среда, в которой распространяется сигнал, называется носителем сигнала .

Сигналы различаются, прежде всего, по своей физической природе . Примеры: световой сигнал, звуковой, электрический, радиосигнал...

В зависимости от порождающего их источника сигналы бывают естественные или искусственные .

Естественные сигналы возникают в силу того, что где-то в живой или неживой природе взаимодействуют материальные объекты. Это естественный процесс, никак не связанный с деятельностью человека. Примеры: свечение Солнца, пение птиц, распространение запаха цветов…

Искусственные сигналы инициируются человеком или возникают в технических системах, созданных человеком. Примеры: электрические сигналы телефонной линии; радиосигналы; сигнальная ракета или костёр; сигнал светофора; сирена пожарной машины...

По форме сигналы бывают аналоговые , дискретные и цифровые .

Аналоговый (или непрерывный) сигнал представляет собой физический процесс, информационная характеристика которого изменяется плавно. Например, плавно изменяющийся электрический сигнал (рис.1). Другие примеры: звуковой сигнал, естественный световой сигнал. Практически все естественные сигналы аналоговые .

Особенностью аналогового сигнала является размытость границы между двумя соседними его значениями. Общее число значений, которыми можно характеризовать аналоговый сигнал, бесконечно велико.

Дискретный сигнал представляет собой физический процесс, информационная характеристика которого изменяется скачкообразно и может принимать только некоторый ограниченный набор значений (рис.2).

Особенность дискретного сигнала – это чёткое разграничение между двумя разными значениями сигнала. Общее число возможных значений, которые может принимать дискретный сигнал, всегда ограничено.

Например, лампа, включенная в электрическую цепь. Лампа может либо гореть, либо не гореть. Если лампа горит, это служит сигналом о том, что в цепи есть ток. Если не горит – тока нет. Промежуточные значения (с какой яркостью горит лампа) здесь не учитываются – значений только два: либо горит, либо не горит.



Другой пример: по телеграфу передаётся некоторое сообщение.

Сообщение передаётся с помощью азбуки Морзе, использующей три разных значения: точка, тире и пробел (пауза). Сигнал, который несёт это сообщение, тоже будет иметь только три разных значения: короткий сигнал, длинный сигнал и отсутствие сигнала. Поскольку количество возможных значений сигнала ограничено – это дискретный сигнал.

Дискретные сигналы, как правило, искусственные (создаются человеком или технической системой).

По видам (типам) сигналов выделяются следующие:

  1. аналоговый
  2. цифровой
  3. дискретный

Аналоговый сигнал

Аналоговый сигнал является естественным. Его можно зафиксировать с помощью различных видов датчиков. Например, датчиками среды (давление, влажность) или механическими датчиками (ускорение, скорость). Аналоговые сигналы в математике описываются непрерывными функциями. Электрическое напряжение описывается с помощью прямой, т.е. является аналоговым.

Цифровой сигнал

Цифровые сигналы являются искусственными, т.е. их можно получить только путем преобразования аналогового электрического сигнала.

Процесс последовательного преобразования непрерывного аналогового сигнала называется дискретизацией. Дискретизация бывает двух видов:

  1. по времени
  2. по амплитуде

Дискретизация по времени обычно называется операцией выборки. А дискретизация по амплитуде сигнала - квантованием по уровню.

В основном цифровые сигналы являются световыми или электрическими импульсами. Цифровой сигнал используют всю данную частоту (полосу пропускания). Этот сигнал все равно остается аналоговым, только после преобразования наделяется численными свойствами. И к нему можно применять численные методы и свойства.

Дискретный сигнал

Дискретный сигнал – это все тот же преобразованный аналоговый сигнал, только он необязательно квантован по уровню.

Это основные сведения о видах (типах) сигналов .

Контрольная работа

Типы сигналов


Введение

сигнал электронный датчик

Электроника - наука, занимающаяся изучением взаимодействия электронов или других заряженных частиц с электромагнитными полями и разработкой методов создания электронных приборов и устройств, в которых это взаимодействие используется для передачи, хранения и передачи информации.

Результаты изучения электронных процессов и явлений, а также исследование и разработка методов создания электронных приборов и устройств обуславливают развитие электронной техники по двум направлениям. Первое из них связано с созданием технологий производства и промышленным выпуском электронных приборов различного назначения. Второе направление связано с созданием на основе этих приборов аппаратуры для решения различного рода задач, связанных с передачей, приемом и преобразованием информации в области информатики, вычислительной техники, систем автоматизации технологических процессов и т.д.

Электроника имеет короткую, но богатую событиями историю. Первый ее период связан с простейшими передатчиками и способными воспринимать их сигналы приемниками. Затем наступила эпоха вакуумных ламп. С середины 50-х годов начался новый период в развитии электроники, связанный с появлением полупроводниковых элементов, а затем малых и больших интегральных схем.

Современный этап развития электроники характеризуется появлением микропроцессорных сверхбольших интегральных схем, цифровых сигнальных процессоров, программируемых логических интегральных схем, позволяющих решать задачи обработки сигналов при высоких технико-экономических показателях. Цифровая электроника, преобразившая системы сбора, обработки и передачи информации, немыслима без аналоговых технологий. Именно аналоговые устройства во многом определяют характеристики этих систем.

Электроника исследует вопросы передачи, приема и преобразования информации на основе электромагнитных явлений. Применительно к электронике наряду с передачей сообщений от человека к человеку целесообразно также рассматривать обмен сведениями между человеком и автоматом и между автоматами.

Имеется множество определений понятия информации от наиболее общего философского (информация есть отражение реального мира) до практического (информация есть все сведения, являющиеся объектом хранения, передачи, преобразования).

Передается информация в виде сигналов. Сигнал есть физический процесс, несущий в себе информацию. Сигнал может быть звуковым, световым, в виде почтового отправления и др. Наиболее распространен сигнал в электрической форме в виде зависимости напряжения от времени U(t).

Практически любая электронная система имеет целью своего функционирования то или иное преобразование энергии или преобразование информации. Задачей любой электронной системы управления в самом общем смысле является обработка информации о текущем режиме работы управляемого объекта и выработка на основе этого управляющих сигналов с целью приближения текущего режима работы объекта к заданному режиму. Под обработкой информации в данном случае подразумевается решение тем или иным способом уравнений состояния системы.

Представленный на рис 1.1 объект - это реальный физический объект, многочисленные свойства которого характеризуются различными физическими величинами (ФВ). Он находится в многосторонних и сложных связях с другими объектами. Из всего многообразия этих связей на рис. 1.1 показаны подлежащие измерению входные ФВ Х и выходными ФВ Y, характеризующие состояние объекта. Датчики (первичные преобразователи) обеспечивают преобразование ФВ Х и Y, имеющих в большинстве случаев неэлектрическую природу, в электрические сигналы с сохранением необходимой информации о возмущающих воздействиях и состоянии объекта.

Устройство первичной обработки (УПО) сигналов является неотъемлемой частью системы. Оно обеспечивает сопряжение датчиков с последующими электронными устройствами, осуществляющими предварительную обработку измеряемых физических величин. Как правило, на него возлагаются следующие функции:

·усиление выходных сигналов первичных преобразователей;

·нормализация аналоговых сигналов, т.е. приведение границ шкалы первичного непрерывного сигнала к одному из стандартных диапазонов входного сигнала аналого-цифрового преобразователя измерительного канала (наиболее распространены диапазоны от 0 до 5 В, от -5 В до 5 В и от 0 до 10 В;

·предварительная низкочастотная фильтрация, т.е. ограничение полосы частот первичного непрерывного сигнала с целью снижения влияния на результат измерения помех различного происхождения;

·обеспечение гальванической изоляции между источником аналогового или дискретного сигнала и измерительным и / или статусным каналами системы. В равной степени это относится к изоляции между каналами дискретного вывода системы и управляемым силовым оборудованием. Помимо собственно защиты выходных и входных цепей гальваническая изоляция позволяет снизить влияние на систему помех по цепям заземления за счет полного разделения земли вычислительной системы и земли контролируемого оборудования. Отсутствие гальванической изоляции допускается только в технически обоснованных случаях.

Выходные сигналы устройства первичной обработки преобразуется в цифровую форму устройством, которое называется аналого-цифровым преобразователем (АЦП). На выходе АЦП получается двоичное представление аналогового сигнала, которое затем обрабатывается цифровым сигнальным процессором. После обработки содержащаяся в сигнале информация может быть преобразована обратно в аналоговую форму с использованием цифро-аналогового преобразователя (ЦАП).

Процессор обрабатывает исходные данные, характеризующие возмущающие воздействия и состояние объекта. Алгоритм обработки определяется объектом измерения, задачей измерения, заключающейся в определении значений выбранных (измеряемых) физических величин (ФВ) с требуемой точностью в заданных условиях, и основными характеристиками измерений.


1. Сигналы

сигнал электронный датчик

Понятие сигнала является одним из основных понятий электроники. Сигнал есть существующий в системе физический процесс, имеющий множество состояний, которые он принимает в соответствии с внешними воздействиями на эту систему. Основным свойством сигнала является то, что он несет информацию о воздействии на эту систему.

Поскольку реальные физические процессы протекают во времени, то в качестве математической модели сигнала, представляющего эти процессы, используют функции времени, отражающие изменения физических процессов.

Сигнал может быть звуковым, световым, в виде почтового отправления и др. Наиболее распространен сигнал в электрической форме в виде зависимости напряжения от времени U(t).


. Классификация сигналов


По роли в передачи конкретной информации сигналы могут быть разделены на полезные и мешающие (помехи). Полезные сигналы переносят заданную информацию, а помехи искажают её, хотя, может быть, и переносят другую информацию.

По степени определенности ожидаемых значений сигнала все сигналы можно разделить на детерминированные сигналы и случайные сигналы. Детерминированным называется сигнал, значение которого в любой момент времени может быть точно определено. Детерминированные сигналы могут быть периодическими и непериодическими.

Периодическим называется сигнал, для которого выполняется условие
s(t) = s (t + kT), где k - любое целое число, Т - период, являющийся конечным отрезком времени. Пример периодического сигнала - гармоническое колебание. .


Здесь Um, T, f0, w0, и j0 - соответственно амплитуда, период, частота, угловая частота и начальная фаза колебания.

К сложным периодическим сигналам можно отнести импульсные сигналы различной формы (электрические импульсы)

Электрический импульс - это кратковременное скачкообразное изменение электрического напряжения или силы тока.

Электрические импульсы тока или напряжения (однополярные) не содержащие высокочастотных колебаний называются видеоимпульсами (рис. 2.2). Электрические импульсы, представляющие собой ограниченные во времени высокочастотные или сверхвысокочастотные электромагнитные колебания, огибающая которых имеет форму видеоимпульса, называются радиоимпульсами.

По характеру изменения во времени различают электрические импульсы прямоугольной, пилообразной, экспоненциальной, колоколобразной и других форм. Реальный видеоимпульс может иметь достаточно сложную форму, которая характеризуется амплитудой А, длительностью импульса tи, длительностью фронта tф и длительностью спада tс, величиной скола вершины DА.

Любой сложный периодический сигнал может быть представлен в виде суммы гармонически колебаний с частотами, кратными основной частоте.

Непериодический сигнал, как правило, ограничен во времени.

Случайным сигналом называют функцию времени, значения которой заранее неизвестны и могут быть предсказаны лишь с некоторой вероятностью. В качестве основных характеристик случайных сигналов принимают:

а) закон распределения вероятности (относительное время пребывания величины сигнала в определенном интервале);

б) спектральное распределение мощности сигнала.

Выходные сигналы датчиков являются отражением некоторых физических процессов. Они, как правило, непрерывны, поскольку большинство физических процессов непрерывны по своей природе. Такие сигналы называются аналоговыми.

Аналоговый сигнал описывается непрерывной (или кусочно-непрерывной) функцией xA(t), причем сама функция, как и ее аргумент, может принимать в заданных пределах любые значения. Аналоговые сигналы достаточно просто генерировать и обрабатывать, однако они позволяют решать относительно простые технические задачи. Работа современных электронных систем основана на использовании дискретных и цифровых сигналов.

Дискретный во времени сигнал получается в результате дискретизации непрерывной функции, представляющей замену непрерывной функции ее мгновенными значениями в дискретные моменты времени. Такой сигнал описывается решетчатой функцией (последовательным временным рядом) S (п?t). Она может принимать любые значения в некотором интервале, в то время как независимая переменная n принимает дискретные значения п = 0, ±1, ±2,…, а?t представляет собой интервал дискретизации.

Квантованный по уровню сигнал получается в результате операции квантование. Суть операции квантования по уровню состоит в том, что в непрерывном динамическом диапазоне аналогового сигнала фиксируется ряд дискретных уровней, называемых уровнями квантования. Текущие значения аналогового сигнала отождествляются с ближайшими уровнями квантования.

Квантование по уровню дискретного во времени сигнала позволяет получить дискретно-квантованный сигнал. Цифровой сигнал получается в результате нумерации уровней квантования дискретно-квантованного сигнала двоичными числами (числами в двоичной системе счисления) и, следовательно, представления отсчетных значений дискретно-квантованного сигнала в форме чисел.

Среди детерминированных сигналов особое место занимают испытательные сигналы, необходимость в существовании которых обусловлена потребностями испытания характеристик разрабатываемых электронных устройств.

Гармоническое колебание. Самым распространенным испытательным сигналом является гармоническое колебание, которое используется в измерительной практике для оценки частотных свойств устройств различного назначения.

Единичный скачок представляет собой безразмерную величину, поэтому умножение сигнала s(t) на функцию единичного скачка равносильно включению этого сигнала в момент t=0:


s (t) при t ³ 0;(t) 1 (t) =

при t < t0.


Дельта-функция. По определению ?-функция удовлетворяет следующим условиям:


0 при t ¹ t0;

d(t - t0) =

При t = t0;


Таким образом, ?-функция равна нулю при всех отличных от нуля значениях аргумента и принимает в точке t = 0 бесконечно большое значение. Площадь под кривой, ограниченной ?-функцией, равна единице.


3. Формы представления детерминированных сигналов


Модели сигналов в виде функции времени предназначены, в первую очередь, для анализа формы сигналов. При решении задач прохождения сигналов сложной формы через какие-либо устройства такая модель сигнала часто не совсем удобна и не позволяет понять суть происходящих в устройствах физических процессов.

Поэтому сигналы представляют набором элементарных (базисных) функций, в качестве которых наиболее часто используют ортогональные гармонические (синусоидальные и косинусоидальные) функции. Выбор именно таких функций обусловлен тем, что они являются, с математической точки зрения, собственными функциями инвариантных во времени линейных систем (систем, параметры которых не зависят от времени), т.е. не изменяют своей формы после прохождения через эти системы. В результате сигнал может быть представлен множеством амплитуд, фаз и частот гармонических функций, совокупность которых называется спектром сигнала.

Таким образом, существуют две формы представления произвольного детерминированного сигнала: временное и частотное (спектральное).

Первая форма представления основана на математической модели сигнала в виде функции времени t:


вторая - на математической модели сигнала в виде функции частоты f, причем, что весьма важно, эта модель существует только в области комплексных функций:


S = (f) = S(jf).


Обе формы представления сигнала связаны между собой парой преобразований Фурье:

При использовании угловой (циклической) частоты w = 2pf преобразования Фурье имеют следующий вид:

Временное представление гармонического колебания имеет следующий вид:

где Um, T, f0, w0, и j0 - соответственно амплитуда, период, частота, угловая частота и начальная фаза колебания.

Для представления такого колебания в частотной области достаточно задать две функции частоты, показывающие, что на частоте w0 амплитуда сигнала равна Um, а начальная фаза равна j0:

Графики временного и частотного представлений гармонического колебания приведены на рис. 2.7, где амплитуда Um и фаза j0 отложены в виде отрезков прямых.

Значения Um =U(w0) и j0 =j(w0) называются соответственно амплитудным и фазовым спектром гармонического колебания, а их совокупность - просто спектром.

Вместо использования в частотной области двух действительных функций можно использовать одну, но комплексную функцию. Для этого запишем временное представление гармонического колебания в комплексной форме:



Если исключить из рассмотрения область отрицательных частот (они физического смысла не имеют), то можно записать:



Где - комплексная амплитуда гармонического колебания, модуль которой равен Um, а аргумент - j0.


4. Цели обработки физических сигналов


Главная цель обработки физических сигналов заключается в необходимости получения содержащейся в них информации. Эта информация обычно присутствует в амплитуде сигнала (абсолютной или относительной), в частоте или в спектральном составе, в фазе или в относительных временных зависимостях нескольких сигналов. Как только желаемая информация будет извлечена из сигнала, она может быть использована различными способами.

В некоторых случаях желательно переформатировать информацию, содержащуюся в сигнале. В частности, смена формата имеет место при передаче звукового сигнала в телефонной системе с многоканальным доступом и частотным разделением (FDMA). В этом случае аналоговые методы используются, чтобы разместить несколько голосовых каналов в частотном спектре для передачи через радиорелейную станцию микроволнового диапазона, коаксиальный или оптоволоконный кабель. В случае цифровой связи аналоговая звуковая информация сначала преобразуется аналого-цифровым преобразователем в цифровую. Цифровая информация, представляющая индивидуальные звуковые каналы, мультиплексируется во времени (многоканальный доступ с временным разделением, TDMA) и передается по последовательной цифровой линии связи.

Еще одна причина обработки сигналов заключается в сжатии полосы частот сигнала (без существенной потери информации) с последующим форматированием и передачей информации на пониженных скоростях, что позволяет сузить требуемую полосу пропускания канала. В высокоскоростных модемах и системах адаптивной импульсно-кодовой модуляции широко используются алгоритмы устранения избыточности данных (сжатия), так же как и в цифровых системах мобильной связи, системах записи звука, в телевидении высокой четкости.

Программно-аппаратные комплексы для автоматизации измерений во многих случаях используют информацию, полученную от датчиков, для выработки соответствующих сигналов обратной связи, которые, в свою очередь, непосредственно управляют измерительным процессом. Эти системы требуют наличия как АЦП и ЦАП, так и датчиков, устройств нормализации сигнала и цифровых процессоров

В некоторых случаях в сигнале, содержащем информацию, присутствует шум, и основной целью является восстановление сигнала. Такие методы, как фильтрация, синхронное детектирование и т.д., часто используются для выполнения этой задачи как в аналоговой, так и в цифровой областях.

Таким образом, цели преобразования сигналов:

·извлечение информации о сигнале (амплитуда, фаза, частота, спектральные составляющие, временные соотношения);

·преобразование формата сигнала;

·сжатие данных;

·формирование сигналов обратной связи;

·аналого-цифровое преобразование;

·цифро-аналоговое преобразование;

·выделение сигнала из шума.


. Методы обработки физических сигналов


Сигналы могут быть обработаны с использованием:

·аналоговых методов (аналоговой обработки сигналов);

·цифровых методов (цифровой обработки сигналов);

·или комбинации аналоговых и цифровых методов (комбинированной обработки сигналов).

Устройства, в которых производится обработка аналоговых сигналов (аналоговая обработка), называются аналоговыми (аналоговыми процессорами).

Устройства, в которых производится обработка цифровых сигналов (цифровая обработка), называются цифровыми (цифровыми процессорами).

В некоторых случаях выбор метода обработки ясен, в других случаях нет ясности в выборе и, следовательно, принятие окончательного решения основывается на определенных соображениях, основанных на преимуществах и недостатках указанных методов.

К основным преимуществам цифровых методов обработки сигналов можно отнести:

·возможность реализации сложных алгоритмов обработки сигналов, которые трудно, а зачастую даже невозможно реализовать c помощью аналоговой техники;

·возможность реализации принципа «адаптации» или самонастройки, то есть возможности изменения алгоритма обработки сигнала без физической перестройки устройства (например, зависимости от вида сигнала, поступающего на вход фильтра);

·возможность одновременной обработки нескольких сигналов;

·принципиально достижимая более высокая точность обработки сигнала;

·отсутствие существенного влияния нестабильности параметров цифровых процессоров, вызванной колебаниями температуры, старением, дрейфом нуля, изменением питающих напряжений и другими причинами, на «качество» обработки сигналов;

·большая помехоустойчивость цифровых устройств и меньшие энергетические, временные и частотные «затраты» на передачу цифровых сигналов (по сравнению с передачей аналоговых сигналов);

·более высокий уровень развития цифровых устройств.

К недостаткам цифровых процессоров можно отнести:

·большую сложность по сравнению с аналоговыми устройствами и пока еще более высокую стоимость;

·не столь высокое, как хотелось бы, быстродействие;

·невозможность устранения специфических погрешностей, вызванных дискретизацией, квантованием сигнала и округлениями в процессе вычислений.

Сегодняшний специалист стоит перед выбором надлежащей комбинации аналоговых и цифровых методов для решения задачи обработки сигналов. Невозможно обработать физические аналоговые сигналы, используя только цифровые методы, так как все датчики (микрофоны, термопары, тензорезисторы, пьезоэлектрические кристаллы, головки накопителя на магнитных дисках и т.д.) являются аналоговыми устройствами. Поэтому, некоторые виды сигналов требуют наличия цепей нормализации для дальнейшей обработки сигналов аналоговым или цифровым методом. В действительности, цепи нормализации сигнала - это аналоговые процессоры, выполняющие:

·усиление сигналов в измерительных и предварительных (буферных) усилителях);

·обнаружение сигнала на фоне шума высокоточными усилителями синфазного сигнала;

·динамическое сжатие диапазона (логарифмическими усилителями, логарифмическими ЦАП и усилителями с программируемым коэффициентом усиления);

·фильтрация (пассивная и активная).


Литература


1.Волынский В.А. и др. Электротехника /Б.А. Волынский, Е.Н. Зейн, В.Е. Шатерников: Учеб. пособие для вузов. - М.: Энергоатомиздат, 2011. - 528 с., ил.

2.Касаткин А.С., Немцов М.В. Электротехника: Учеб. пособие для вузов. - 4-е изд., перераб. - М.: Энергоатомиздат, 2003. - 440 с., ил.

.Основы промышленной электроники: Учебник для неэлектротехн. спец. вузов /В.Г. Герасимов, О М. Князьков, А Е. Краснопольский, В.В. Сухоруков; под ред. В.Г. Герасимова. - 3-е изд., перераб. и доп. - М.: Высш. шк., 2006. - 336 с., ил.

.Электротехника и электроника в 3-х кн. Под ред. В.Г. Герасимова Кн.1. Электрические и магнитные цепи. - М.: Высшая шк. - 2006 г.

.Электротехника и электроника в 3-х кн. Под ред. В.Г. Герасимова Кн.2. Электромагнитные устройства и электрические машины. - М.: Высшая шк. - 2007 г.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Как работать