Исторя развития вычислительной техники. Роль эвм в современном мире. области применения Роль и значение вычислительной техники

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ВЛАДИМИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

КАФЕДРА ИНФОРМАТИКИ И ЗАЩИТЫ ИНФОРМАЦИИ

РЕФЕРАТ НА ТЕМУ:

ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Выполнил

студент группы Фоб -107

Еремин А.А

Груздева Л.М

ВЛАДИМИР

Введение стр. 2

Ручной период докомпьютерной эпохи стр. 3

Механический этап стр. 4

Электромеханический этап стр. 7

Этап современных ЭВМ (электронный) стр. 10

Роль вычислительной техники в жизни человека стр. 13

Заключение стр. 18

Список литературы стр. 20

ВВЕДЕНИЕ

Слово «компьютер» означает «вычислитель», т.е. устройство для вычислений. В наше время трудно представить себе, что без компьютеров можно обойтись. А ведь не так давно, до начала 70-х годов вычислительные машины были доступны весьма ограниченному кругу специалистов, а их применение, как правило, оставалось окутанным завесой секретности и мало известным широкой публике. Однако в 1971 году произошло событие, которое в корне изменило ситуацию и с фантастической скоростью превратило компьютер в повседневный рабочий инструмент десятков миллионов людей. В том, вне всякого сомнения знаменательном году еще почти никому не известная фирма Intel из небольшого американского городка с красивым названием Санта-Клара (шт. Калифорния), выпустила первый микропроцессор. Именно ему мы обязаны появлением нового класса вычислительных систем – персональных компьютеров, которыми теперь пользуются, по существу, все, от учащихся начальных классов и бухгалтеров до ученых и инженеров.

В данном реферате мы рассмотрим историю развития вычислительной техники от древности до наших дней, а также краткий обзор о возможностях применения современных вычислительных систем и дальнейшие тенденции развития персональных компьютеров.

Знание истории развития вычислительной техники как основы компьютерной информатики – необходимый составной элемент компьютерной культуры

РУЧНОЙ ПЕРИОД КОМПЬЮТЕРНОЙ ЭПОХИ

Ручной период начался на заре человеческой цивилизации. Фиксация результатов счета у разных народов на разных континентах производилась разными способами: пальцевый счет, нанесение засечек, счетные палочки, узелки и т.д. Наконец, появление приборов, использующих вычисление по разрядам, как бы предполагали наличие некоторой позиционной системы счисления, десятичной, пятеричной, троичной и т.д. К таким приборам относятся абак, русские, японские, китайские счеты.

Историю цифровых устройств начать следует со счетов . Подобный инструмент был известен у всех народов. Древнегреческий абак (доска или «саламинская доска» по имени острова Саламин в Эгейском море) представлял собой посыпанную морским песком дощечку. На песке проходили бороздки, на которых камешками обозначались числа. Одна бороздка соответствовала единицам, другая - десяткам и т.д. Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камушек в следующем разряде. Римляне усовершенствовали абак, перейдя от деревянных досок, пеcка и камешков к мраморным доскам с выточенными желобками и мраморными шариками. Китайские счеты суан – пан состояли из деревянной рамки, разделенной на верхние и нижние секции. Палочки соотносятся с колонками, а бусинки – с числами. У китайцев в основе счета лежала не десятка, а пятерка.

Суан - пан разделены на две части: в нижней части на каждом ряду располагаются по 5 косточек, в верхней части – по 2. Таким образом, для того, чтобы выставить на этих счетах число 6, ставили сначала косточку, соответствующую пятерке, а затем добавляли одну косточку в разряд единиц.

У японцев это же устройство для счета носило название серобян .

На Руси долгое время считали по косточкам, раскладываемым в кучки. Примерно с 15 века получил распространение «дощатый счет », завезенный, видимо, западными купцами с ворванью и текстилем. «Дощатый счет» почти не отличался от обычных счетов и представлял собой рамку с укрепленными горизонтальными веревочками, на которые были нанизаны просверленные сливовые или вишневые косточки.

В 9 веке индийские ученые сделали одно из величайших открытий в математике. Они изобрели позиционную систему счисления, которой теперь пользуется весь мир.

При записи числа, в котором отсутствует какой - либо разряд (например, 110 или 16004), индийцы вместо названия цифры говорили слово «пусто». При записи на месте «пустого» разряда ставили точку, а позднее рисовали кружок. Такой кружок называется «сунья».

Арабские математики перевели это слово по смыслу на свой язык – они говорили «сифр». Современное слово «нуль» происходит от латинского.

МЕХАНИЧЕСКИЙ ЭТАП

Принято считать, что первые, как тогда их называли вычислители, появились в XVII веке и на протяжение четырех веков множество талантливых людей приложили свои усилия для создания современного компьютера, ставшего неотъемлемой частью каждой квартиры или офиса.

Но самых первых изобретателей компьютеров безусловно надо знать. В 1623 году Вильгельм Шиккард изобрел и построил первую работающую модель 6-ти разрядного механического вычислительного устройства, которое могло выполнять простейшие арифметические действия: сложение и вычитание с семизначными числами. Описание машины Шиккарда, к сожалению, оказалось утраченным во время Тридцатилетней войны.

В 1642 году Блез Паскаль сконструировал 8-разрядную суммирующую машину. Эта машина представляла собой комбинацию взаимосвязанных колесиков с нанесенными на них цифрами от 0 до 9 и приводов. Когда первое колесико делало полный оборот от 0 до 9, в действие автоматически приводилось второе колесико. Когда и оно достигало цифры 9, начинало вращаться третье и так далее. Машина Паскаля могла складывать и вычитать, умножать (делить) лишь путем многократного сложения (вычитания).

В 1668 году появился новый вычислитель, предназначенный исключительно для финансовых операций. Его изобретателем стал стал сэр Самюэль Морланд.

В 1674 году великий философ и ученый Готфрид Вильгельм Лейбниц сконструировал машину «четырех действий», которая выполняла сложение, вычитание, умножение, деление и извлечение квадратного корня. В отличие от Паскаля Лейбниц использовал в своей машине не колесики и приводы, а цилиндры с нанесенными на них цифрами. Специально для нее Лейбниц впервые применил двоичную систему счисления, использующую вместо обычных для человека десяти цифр две: 0 и 1.

Следующая волна конструкторов-изобретателей компьютеров была замечена только в XIX веке, два века спустя после первых счетных машин и вычислителей.

В 1820 году учёный и изобретатель Шарль де Кольмар придумал самый настоящий калькулятор и назвал его арифмометр. Как и многие его предшественники, арифмометр был механическим устройством. Впервые счетное устройство выпускалось серийно и поступило в широкую продажу. С некоторыми усовершенствованиями в конструкции арифмометры прослужили человеку в общей сложности 90 лет!

В 1822 году английский математик Чарлз Бэббидж описал машину, способную рассчитывать и печатать большие математические таблицы, и сконструировал машину для табулирования, состоявшую из валиков и шестеренок, вращаемых с помощью рычага. Машина могла производить некоторые математические вычисления с точностью до восьмого знака после запятой. Это был прообраз его разностной машины, к постройке которой он приступил в 1823 году, получив правительственную субсидию для продолжения работ. Разностная машина должна была производить вычисления с точностью до 20 знака после запятой. Постройка машины отняла у Бэббиджа 10 лет, ее конструкция становилась все более сложной, громоздкой и дорогой. Она так и не была закончена, финансирование проекта было прекращено.

Тем временем Бэббиджем овладела идея создания нового прибора - аналитической машины. Главное ее отличие от разностной машины заключалось в том, что она была программируемой и могла выполнять любые заданные ей вычисления. По существу аналитическая машина стала прообразом современных компьютеров, так как включала их основные элементы: память, ячейки которой содержали бы числа, и арифметическое устройство, состоящее из рычагов и шестеренок. Бэббидж предусмотрел возможность вводить в машину инструкции при помощи перфокарт. Однако и эта машина не была закончена, поскольку низкий уровень технологий того времени стал главным препятствием на пути ее создания.

В 1886 году Дорр Фелт создаёт устройство с необычным названием <<Комптометр>>. Это было первое устройство с возможностью ввода данных с клавиатуры.

Тысячи людей восхищались необыкновенными устройствами. Они без устали крутили ручки рифмометров, производя различные математические расчеты.

ЭЛЕКТРОМЕХАНИЧЕСКИЙ ЭТАП

Электромеханический этап развития ВТ явился наименее продолжительным и охватывает около 60 лет – от первого табулятора Г. Холлерита до первой ЭВМ ENIAK (1945)

В 1888 Герман Холлерит (американский инженер, изобретатель первой электромеханической счетной машины - табулятора, основатель фирмы - предшественницы IBM) сконструировал электромеханическую машину, которая могла считывать и сортировать статистические записи, закодированные на перфокартах. Эта машина, названная табулятором, состояла из реле, счетчиков, сортировочного ящика. Данные на каждого человека наносились на перфокарты, почти не отличающиеся от современных, в виде пробивок. При прохождении перфокарты через машину данные, отмеченные дырочками, снимались путем прощупывания системой игл. Если напротив иглы оказывалось отверстие, то игла, пройдя сквозь него, касалась металлической поверхности, расположенной под картой. Возникавший таким образом контакт замыкал электрическую цепь, благодаря чему к результатам расчетов автоматически добавлялась единица, после чего перфокарта попадала в определенное отделение сортировочного ящика.

В 1890 изобретение Холлерита было впервые использовано для 11-й американской переписи населения. Успех вычислительных машин с перфокартами был феноменален. То, чем десятилетием ранее 500 сотрудников занимались в течение семи лет, Холлерит сумел выполнить с 43 помощниками на 43 вычислительных машинах за 4 недели.

Это изобретение имело успех не только в США, но и в Европе, где стало широко применяться для статистических исследований. Несколько таких машин закупила Россия. Холлерит был удостоен нескольких премий и получил звание профессора Колумбийского университета. В 1896 он организовал в Нью-Йорке компанию по производству машин для табуляции (Tabulating Machine Company), которая впоследствии выросла в International Business Machines Corporation - IBM.

В 1938 Цузе в домашних условиях собрал электромеханическую машину Z1. Машина имела клавиатуру для ввода задач и панель с лампочками, на которой высвечивался результат. Затем Цузе заменил неудобное печатающее устройство на перфоленту, которую изготовил из старой 35-миллиметровой пленки, и назвал новую модель Z2. Когда началась война, Цузе получил поддержку германского правительства на разработку компьютера для военных целей - конструирования самолетов и ракет. В 1941, на два года опередив Эйкена, Цузе создал третью модель - Z3, основанную на электромеханических реле и работавшую в двоичной системе счисления. Z3 состояла из 600 реле счетного устройства и 2000 реле устройства памяти. Числа можно было «записать» в память и «считывать» оттуда посредством электрических сигналов, которые проходили через реле. Реле либо пропускали сигнал, либо не пропускали. Машина считывала программу механически шаг за шагом (линейно) и проводила от 15 до 20 вычислительных операций в секунду. В это же время Цузе приступил к постройке Z4, в которой все механические части должны были быть заменены на электронные лампы. Во время бомбежек Берлина все машины Цузе, кроме Z4, погибли.

В 1947 году сотрудники лабаратории Bell Уильям Шокли, Джон Бардин и Уолтер Берттейн создают первый в мире транзистор. Открытие транзистора – важнейшая веха в истории создания компьютеров, ведь именно транзисторы стали основой всех микропроцессоров. Скрытые внутри процессорного <<камня>> транзисторы наделяют современный компьютер думать. В 1954 году компания Texas Instruments начала серийное производство кремниевых транзисторов на промышленной основе. В 1956 году в Технологическом институте города Массачусетс создан первый компьютер на основе транзисторов. В 1958 -1959 годах Джек Килби и Роберт Нойс создают интегральную микросхему – первый прототип современных микропроцессоров.

Мне бы хотелось рассказать о Роберте Нойсе подробней.

НОЙС (Noyce) Роберт (12 декабря 1927, Берлингтон, шт. Айова - 3 июня 1990, Остин, шт. Техас), американский инженер, изобретатель (1959) интегральной схемы, системы взаимосвязанных транзисторов на единой кремниевой пластинке, основатель (1968, совместно с Г. Муром) корпорации Intel.

В 1949 Нойс окончил Гриннелл-колледж в Айове со степенью бакалавра, а в 1953 получил докторскую степень в Массачусетском технологическом институте. В 1956-57 работал в полупроводниковой лаборатории изобретателя транзисторов У. Шокли, а затем вместе с семью коллегами уволился и основал одну из первых электронных фирм по производству кремниевых полупроводников - Fairchild Semiconductor (Фэрчайлд Семикондактор), которая дала название Силиконовой долине в Северной Калифорнии. Одновременно, но независимо друг от друга Нойс и Килби изобрели интегральную микросхему.

В 1968 Нойс и его давний коллега Мур основали корпорацию Intel. Спустя два года они создали 1103-ю запоминающую микросхему из кремния и поликремния, которая заменила собой прежние малоэффективные керамические сердечники в запоминающих устройствах компьютеров. В 1971 Intel представила микропроцессор, объединяющий в одной микросхеме функции запоминающего устройства и процессора. Вскоре корпорация Intel стала лидером по производству микропроцессоров. В 1988 Нойс стал президентом корпорации Sematech, исследовательского консорциума, финансируемого совместно промышленным капиталом и правительством США с целью развития передовых технологий в американской полупроводниковой промышленности.

ЭТАП СОВРЕМЕННЫХ ЭВМ

Современный этап развития ЭВМ охватывает период с 1970 года до наших дней. Впервые стали применяться большие интегральные схемы (БИС), которые по мощности примерно соответствовали 1000 ИС. Это привело к снижению стоимости производства компьютеров. В 1980 г. центральный процессор небольшой ЭВМ оказалось возможным разместить на кристалле площадью 1/4 дюйма (0,635 см 2 .). БИСы применялись уже в таких компьютерах, как “Иллиак”, ”Эльбрус”, ”Макинтош ”. Быстродействие таких машин составляет тысячи миллионов операций в секунду. Емкость ОЗУ возросла до 500 млн. двоичных разрядов. В таких машинах одновременно выполняются несколько команд над несколькими наборами операндов.

C точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Ёмкость оперативной памяти порядка 1 - 64 Мбайт.

Распространение персональных компьютеров к концу 70-х годов привело к некоторому снижению спроса на большие ЭВМ и мини-ЭВМ. Это стало предметом серьезного беспокойства фирмы IBM (International Business Machines Corporation) - ведущей компании по производству больших ЭВМ, и в 1979 г. фирма IBM решила попробовать свои силы на рынке персональных компьютеров, создав первые персональные компьютеры- IBM PC.

В 1971 году в результате исследований команда специалисто <> под руководством Тэда Хоффа создает первый 4-разрядный микропроцессор INTEL -4004. Далее новые модели процессоров от <> стали появляться регулярно. <> и по сей день занимает одно из лидирующих мест в производстве процессоров для персональных компьютеров. Но конкуренты не дремали практически с самого начала основания <>. Более того, через некоторое время разразилась настоящая компьютерных вооружений, которую принято называть <<война процессоров>>. Фирмы <<<>>> и <<<>>> - вот два источника беспокойства для <>. Несмотря на то, что процессоры, выпускаемые этими двумя фирмами, едва ли составляют 15% от всего рынка, их продукция постепенно все большей альтернативой микропроцессорам <>.

Основными конкурентами <> являлись <<АMD>> и <>

<<АMD>> (Эй-Эм-Ди, <>; от Advanced Micro Devices, Эдванст майкро дивайсиз), американская корпорация, разработчик и производитель интегральных схем, электронных устройств, компонентов для компьютеров и средств связи. Корпорация основана в 1969 году, ее главный офис находится в городе Саннивейл (Калифорния). <> производит микропроцессоры, устройства флэш-памяти, телекоммуникационные и сетевые продукты. В компьютерном мире <> известна как конкурент Intel в производстве микропроцессоров для персональных компьютеров. Производственные мощности корпорации находятся в США, Японии, Малайзии, Сингапуре, Таиланде.

<> (Сайрикс Корпорейшн) (<> Corporation), структурное подразделение американского концерна National Semiconductor (с 1997), один из ведущих мировых производителей микропроцессоров для персональных компьютеров. Штаб-квартира находится в Ричардсоне (шт. Техас).

В начале 1990-х годов <> выпустил математический сопроцессор, позволявший ускорять математические вычисления. Его коммерческий успех дал возможность <> в 1992 развернуть производство клонов процессоров x86. Компания разработала целое семейство 386, 486, 5х86 микропроцессоров. В 1995 началось производство шестого поколения микропроцессоров <> 6x86. В 1997 <> на основе процессора 6х86 выпустил новый процессор с поддержкой MMX-инструкций. Кроме того, <> наладил выпуск высокоинтегрированных процессоров MegiaGX. В том же 1997 <> вошел в состав американского полупроводникового концерна National Semiconductor. В 1999 был выпущен новый микропроцессор <> MXi, основанный на новом процессорном ядре. 5 августа 1999 компания была продана корпорации VIA Technologies.

Война процессоров продолжается и по сей день. Фирме <> приходится сдерживать натиск конкурентов, разрабатывая все более качественные и мощные процессоры.

В 1974 году фирма <>, один из первых конкурентов <>, выпускает свой первый процессор.

В 1976 году фирма <> создает конкурентный <> процессор TMS 9900.

1976 год – официальное начало войны процессоров. Фирма <> получает права и возможность копировать инструкции и микрокоды процессоров <>.

В 1983 году на рынке появляется процессор от фирмы <>. Его название IBM 80286.

В 1997году появляется INTEL Pentium II.

В 1997 году в ответ на Pentium II <> выпускает свой новый процессор AMD K5.

В 1999 году выпущен в продажу INTEL Pentium III.

2004-2005 года разработка и внедрение двуядерных процессоров от <> и <>.

2006 год появление четырёхядерных процессоров от <>.

РОЛЬ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ В ЖИЗНИ ЧЕЛОВЕКА

Персональный компьютер быстро вошел в нашу жизнь. Еще несколько лет назад было редкостью увидеть какой-нибудь персональный компьютер – они были, но были очень дорогие, и даже не каждая фирма могла иметь у себя в офисе компьютер. Теперь же в каждом третьем доме есть компьютер, который уже глубоко вошел в жизнь человека.

Современные вычислительные машины представляют одно из самых значительных достижений человеческой мысли, влияние, которого на развитие научно-технического прогресса трудно переоценить. Область применения ЭВМ огромна и непрерывно расширяется.

Даже 30 лет назад было только около 2000 различных сфер применения микропроцессорной техники. Это управление производством (16%), транспорт и связь (17%), информационно-вычислительная техника (12%), военная техника (9%), бытовая техника (3%), обучение (2%), авиация и космос (15%), медицина (4%), научное исследование, коммунальное и городское хозяйство, банковский учёт, метрология, и другие области.

Компьютеры в учреждениях. Компьютеры в буквальном смысле совершили революцию в деловом мире. Секретарь практически любого учреждения при подготовке докладов и писем производит обработку текстов. Учрежденческий аппарат использует персональный компьютер для вывода на экран дисплея широкоформатных таблиц и графического материала. Бухгалтеры применяют компьютеры для управления финансами учреждения и введение документации.

Компьютеры на производстве. Компьютеры находят применение при выполнении широкого круга производственных задач. Так, например, диспетчер на крупном заводе имеет в своём распоряжении автоматизированную систему контроля, обеспечивающую бесперебойную работу различных агрегатов. Компьютеры используются также для контроля за температурой и давлением при осуществлении различных производственных процессов. Также управляются компьютером роботы на заводах, скажем, на линиях сборки автомобилей, включающие многократно повторяющиеся операции, например затягивание болтов или окраску деталей кузова.

Компьютер – помощник конструктора. Проекты конструирования самолета, моста или здания требуют затрат большого количества времени и усилий. Они представляют собой один из самых трудоёмких видов работ. Сегодня, в век компьютера, конструкторы имеют возможность посвятить своё время целиком процессу конструирования, поскольку расчёты и подготовку чертежей машина «берёт на себя». Пример: конструктор автомобилей исследует с помощью компьютера, как форма кузова влияет на рабочие характеристики автомобиля. С помощь таких устройств, как электронное перо и планшет, конструктор может быстро и легко вносить любые изменения в проект и тут же наблюдать результат на экране дисплея.

Компьютер в магазине самообслуживания. Представьте себе, что идёт 1979 год и вы работаете неполный рабочий день в качестве кассира в большом универмаге. Когда покупатели выкладывают отобранные ими покупки на прилавок, вы должны прочесть цену каждой покупки и ввести её в кассовый аппарат. А теперь вернёмся в наши дни. Вы по-прежнему работаете кассиров и в том же самом универмаге. Но как много здесь изменилось. Когда теперь покупатели выкладывают свои покупки на прилавок, вы пропускаете каждую из них через оптическое сканирующее устройство, которое считывает универсальный код, нанесённый на покупку, по которому компьютер определяет, цену этого изделия, хранящуюся в памяти компьютера, и высвечивает ее на маленьком экране, чтобы покупатель мог видеть стоимость своей покупки. Как только все отобранные товары прошли через оптическое сканирующее устройство, компьютер немедленно выдаёт общую стоимость купленных товаров.

Компьютер в банковских операциях. Выполнение финансовых расчётов с помощью домашнего персонального компьютера – это всего лишь одно из его возможных применений в банковском деле. Мощные вычислительные системы позволяют выполнять большое количество операций, включая обработку чеков, регистрацию изменения каждого вклада, приём и выдачу вкладов, оформление ссуды и перевод вкладов с одного счёта на другой или из банка в банк. Кроме того, крупнейшие банки имеют автоматические устройства, расположенные за пределами банка. Банковские автоматы позволяют клиентам не выстаивать длинных очередей в банке, взять деньги со счета, когда банк закрыт. Всё, что требуется, - вставить пластмассовую банковскую карточку в автоматическое устройство. Как только это сделано, необходимые операции будут выполнены.

Компьютер в медицине. Как часто вы болеете? Вероятно, у вас была простуда, ветрянка, болел живот? Если в этих случаях вы обращались к доктору, скорее всего он проводил осмотр быстро и достаточно эффективно. Однако медицина – это очень сложная наука. Существует множество болезней, каждая из которых имеет только ей присущие симптомы. Кроме того, существуют десятки болезней с одинаковыми и даже совсем одинаковыми симптомами. В подобных случаях врачу бывает трудно поставить точный диагноз. И здесь ему на помощь приходит компьютер. В настоящее время многие врачи используют компьютер в качестве помощника при постановке диагноза, т.е. для уточнения того, что именно болит у пациента. Для этого больной тщательно обследуется, результаты обследования сообщаются компьютеру. Через несколько минут компьютер сообщает, какой из сделанных анализов дал аномальный результат. При этом он может назвать возможный диагноз.

Компьютер в сфере образования. Сегодня многие учебные заведения не могут обходиться без компьютеров. Достаточно сказать, что с помощью компьютеров: трёхлетние дети учатся различать предметы по их форме; шести- и семилетние дети учатся читать и писать; выпускники школ готовятся к вступительным экзаменам в высшие учебные заведения; студенты исследуют, что произойдёт, если температура атомного реактора превысит допустимый предел. «Машинное обучение» – термин, обозначающий процесс обучения при помощи компьютера. Последний в этом случае выступает в роли «учителя». В этом качестве может использоваться микрокомпьютер или терминал, являющийся частью электронной сети передачи данных. Процесс усвоения учебного материала поэтапно контролируется учителем, но если учебный материал даётся в виде пакета соответствующих программ ЭВМ, то его усвоение может контролироваться самим учащимся.

Компьютеры на страже закона. Вот новость, которая не обрадует преступника: «длинные руки закона» теперь обеспечены вычислительной техникой. «Интеллектуальная» мощь и высокое быстродействие компьютера, его способность обрабатывать огромное количество информации, теперь поставлены на службу правоохранительных органов для повышения эффективности работы. Способность компьютеров хранить большое количество информации используется правоохранительными органами для создания картотеки преступной деятельности. Электронные банки данных с соответствующей информацией легко доступны государственным и региональным следственным учреждениям всей страны. Так, федеральное бюро расследования (ФБР) располагает общегосударственным банком данных, который известен как национальный центр криминалистической информации. Компьютеры используются правоохранительными органами не только в информационных сетях ЭВМ, но и в процессе розыскной работы. Например, в лабораториях криминалистов компьютеры помогаю проводить анализ веществ, обнаруженных на месте преступления. Заключения компьютера-эксперта часто оказываются решающими в доказательствах по рассматриваемому делу.

Компьютер как средство общения людей. Если на одном компьютере работают хотя бы два человека, у них уже возникает желание использовать этот компьютер для обмена информацией друг с другом. На больших машинах, которыми пользуются одновременно десятки, а то и сотни человек, для этого предусмотрены специальные программы, позволяющие пользователям передавать сообщения друг другу. Стоит ли говорить о том, что как только появилась возможность объединять несколько машин в сеть, пользователи ухватились за эту возможность не только для того, чтобы использовать ресурсы удаленных машин, но и чтобы расширить круг своего общения. Создаются программы, предназначенные для обмена сообщениями пользователей, находящихся на разных машинах. Наиболее универсальное средство компьютерного общения – это электронная почта. Она позволяет пересылать сообщения практически с любой машины на любую, так как большинство известных машин, работающих в разных системах, ее поддерживают. Электронная почта - самая распространенная услуга сети Internet. В настоящее время свой адрес по электронной почте имеют приблизительно 20 миллионов человек. Посылка письма по электронной почте обходится значительно дешевле посылки обычного письма. Кроме того сообщение, посланное по электронной почте дойдет до адресата за несколько часов, в то время как обычное письмо может добираться до адресата несколько дней, а то и недель.

Internet - глобальная компьютерная сеть, охватывающая весь мир. Сегодня Internet имеет около 15 миллионов абонентов в более чем 150 странах мира. Ежемесячно размер сети увеличивается на 7-10%. Internet образует как бы ядро, обеспечивающее связь различных информационных сетей, принадлежащих различным учреждениям во всем мире, одна с другой.

Internet предоставляет уникальные возможности дешевой, надежной и конфиденциальной глобальной связи по всему миру. Это оказывается очень удобным для фирм имеющих свои филиалы по всему миру, транснациональных корпораций и структур управления. Обычно, использование инфраструктуры Internet для международной связи обходится значительно дешевле прямой компьютерной связи через спутниковый канал или через телефон.

ЗАКЛЮЧЕНИЕ

Выше мы рассмотрели историю и современное состояние компьютерной техники. Уже сейчас вычислительная техника достигла просто потрясающих высот. Так в 2002 году для Института наук о земле в городе Йокогама (Япония) корпорацией NEC был создан наимощнейший на сегодняшний день суперкомпьютер Eerth Simulator. Производительность новой машины, определенная при помощи стандартных тестов Linpack, составляет 35,6 TELOPS(триллионов операций с плавающей запятой в секунду). Если сопоставить полученные результаты с показателями, приведенными в перечне Top 500 (рейтинг 500 наиболее мощных компьютеров мира), становится ясно, что Earth Simulator работает быстрее, чем 18 лучших по предыдущему рейтингу, машин вместе взятых.

Каковы же перспективы совершенствования персональных компьютеров, и что нас ожидает в дальнейшем в этой сфере?

Сотрудникам Белловских лабораторий удалось создать транзистор размером в 60 атомов! Они считают, что транзисторы ко дню своего шестидесятилетия (2007 год) по ряду параметров достигнут физических пределов. Так, размер транзистора должен стать чуть меньше 0,01 мкм (уже достигнут размер 0,05 мкм). Это означает, что на чипе площадью 10 кв. см можно будет разместить 20 000 000 транзисторов.

Описывая бурно развивающуюся в настоящее время технологию производства пластиковых транзисторов, ученые приходят к достаточно логичному выводу, что сумма всех усовершенствований приведет к созданию «финального компьютера», более мощного, чем современные рабочие станции. Компьютер этот будет иметь размер почтовой марки и, соответственно, цену, не превышающую цены почтовой марки.

Представим себе, наконец, гибкий экран телевизора или компьютерного монитора, который не разобьется, если швырнуть его на землю. А что можно сказать о пластинке величиной с обычную кредитную карточку, заполненной массой нужнейшей информации, включая ту, которая обычно и хранится в кредитной карточке, но выполненной из такого материала, что она никогда не потребует замены?

В последнее время высказывались и мысли о том, что давно пора расстаться с электронами как основными действующими лицами на сценах микроэлектроники и обратиться к фотонам. Использование фотонов якобы позволит изготовить процессор компьютера размером с атом. О том, что наступление эпохи таких компьютеров уже не за горами говорит тот факт, что американским ученым удалось на доли секунды остановить фотонный пучок (луч света)...

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1) Шафрин Ю. Информационные технологии, М., 1998.

2) ИНФОРМАТИКА, М., 1994. (энциклопедический словарь для начинающих)

3) Алтухов Е.В., Рыбалко Л.А., Савченко В.С. Основы информатики и вычислительной техники, М., «Высшая школа», 1992.

4) Бордовский Г.А., Исаев Ю.В., Морозов В.В. Информатика в понятиях и терминах, М., 1991.

5) Электронная энциклопедия Кирилла и Мефодия

6) Майоров А.А. Компьютер и Интернет, Росмэн-Пресс, 2001.

Персональный компьютер быстро вошел в нашу жизнь. Еще несколько лет назад было редкостью увидеть какой-нибудь персональный компьютер – они были, но были очень дорогие, и даже не каждая фирма могла иметь у себя в офисе компьютер. Теперь же в каждом третьем доме есть компьютер, который уже глубоко вошел в жизнь человека.

Современные вычислительные машины представляют одно из самых значительных достижений человеческой мысли, влияние которого на развитие научно-технического прогресса трудно переоценить. Область применения ЭВМ огромна и непрерывно расширяется.

Даже 30 лет назад было только около 2000 различных сфер применения микропроцессорной техники. Это управление производством (16%), транспорт и связь (17%), информационно-вычислительная техника (12%), военная техника (9%), бытовая техника (3%), обучение (2%), авиация и космос (15%), медицина (4%), научное исследование, коммунальное и городское хозяйство, банковский учёт, метрология, и другие области.


Компьютеры в учреждениях . Компьютеры в буквальном смысле совершили революцию в деловом мире. Секретарь практически любого учреждения при подготовке докладов и писем производит обработку текстов. Учрежденческий аппарат использует персональный компьютер для вывода на экран дисплея широкоформатных таблиц и графического материала. Бухгалтеры применяют компьютеры для управления финансами учреждения и введение документации.

Компьютеры на производстве . Компьютеры находят применение при выполнении широкого круга производственных задач. Так, например, диспетчер на крупном заводе имеет в своём распоряжении автоматизированную систему контроля, обеспечивающую бесперебойную работу различных агрегатов. Компьютеры используются также для контроля за температурой и давлением при осуществлении различных производственных процессов. Также управляются компьютером роботы на заводах, скажем, на линиях сборки автомобилей, включающие многократно повторяющиеся операции, например затягивание болтов или окраску деталей кузова.

Компьютер – помощник конструктора . Проекты конструирования самолета, моста или здания требуют затрат большого количества времени и усилий. Они представляют собой один из самых трудоёмких видов работ. Сегодня, в век компьютера, конструкторы имеют возможность посвятить своё время целиком процессу конструирования, поскольку расчёты и подготовку чертежей машина «берёт на себя». Пример: конструктор автомобилей исследует с помощью компьютера, как форма кузова влияет на рабочие характеристики автомобиля. С помощь таких устройств, как электронное перо и планшет, конструктор может быстро и легко вносить любые изменения в проект и тут же наблюдать результат на экране дисплея.


Компьютер в магазине самообслуживания . Представьте себе, что идёт 1979 год и вы работаете неполный рабочий день в качестве кассира в большом универмаге. Когда покупатели выкладывают отобранные ими покупки на прилавок, вы должны прочесть цену каждой покупки и ввести её в кассовый аппарат. А теперь вернёмся в наши дни. Вы по-прежнему работаете кассиров и в том же самом универмаге. Но как много здесь изменилось. Когда теперь покупатели выкладывают свои покупки на прилавок, вы пропускаете каждую из них через оптическое сканирующее устройство, которое считывает универсальный код, нанесённый на покупку, по которому компьютер определяет, цену этого изделия, хранящуюся в памяти компьютера, и высвечивает ее на маленьком экране, чтобы покупатель мог видеть стоимость своей покупки. Как только все отобранные товары прошли через оптическое сканирующее устройство, компьютер немедленно выдаёт общую стоимость купленных товаров.


Компьютер в банковских операциях . Выполнение финансовых расчётов с помощью домашнего персонального компьютера – это всего лишь одно из его возможных применений в банковском деле. Мощные вычислительные системы позволяют выполнять большое количество операций, включая обработку чеков, регистрацию изменения каждого вклада, приём и выдачу вкладов, оформление ссуды и перевод вкладов с одного счёта на другой или из банка в банк. Кроме того, крупнейшие банки имеют автоматические устройства, расположенные за пределами банка. Банковские автоматы позволяют клиентам не выстаивать длинных очередей в банке, взять деньги со счета, когда банк закрыт. Всё, что требуется, - вставить пластмассовую банковскую карточку в автоматическое устройство. Как только это сделано, необходимые операции будут выполнены.

Компьютер в медицине . Как часто вы болеете? Вероятно, у вас была простуда, ветрянка, болел живот? Если в этих случаях вы обращались к доктору, скорее всего он проводил осмотр быстро и достаточно эффективно. Однако медицина – это очень сложная наука. Существует множество болезней, каждая из которых имеет только ей присущие симптомы. Кроме того, существуют десятки болезней с одинаковыми и даже совсем одинаковыми симптомами. В подобных случаях врачу бывает трудно поставить точный диагноз. И здесь ему на помощь приходит компьютер. В настоящее время многие врачи используют компьютер в качестве помощника при постановке диагноза, т.е. для уточнения того, что именно болит у пациента. Для этого больной тщательно обследуется, результаты обследования сообщаются компьютеру. Через несколько минут компьютер сообщает, какой из сделанных анализов дал аномальный результат. При этом он может назвать возможный диагноз.

Компьютер в сфере образования . Сегодня многие учебные заведения не могут обходиться без компьютеров. Достаточно сказать, что с помощью компьютеров: трехлетние дети учатся различать предметы по их форме;


шести- и семилетние дети учатся читать и писать; выпускники школ готовятся к вступительным экзаменам в высшие учебные заведения; студенты исследуют, что произойдёт, если температура атомного реактора превысит допустимый предел. «Машинное обучение» – термин, обозначающий процесс обучения при помощи компьютера. Последний в этом случае выступает в роли «учителя». В этом качестве может использоваться микрокомпьютер или терминал, являющийся частью электронной сети передачи данных. Процесс усвоения учебного материала поэтапно контролируется учителем, но если учебный материал даётся в виде пакета соответствующих программ ЭВМ, то его усвоение может контролироваться самим учащимся.

Компьютеры на страже закона . Вот новость, которая не обрадует преступника: «длинные руки закона» теперь обеспечены вычислительной техникой. «Интеллектуальная» мощь и высокое быстродействие компьютера, его способность обрабатывать огромное количество информации, теперь поставлены на службу правоохранительных органов для повышения эффективности работы. Способность компьютеров хранить большое количество информации используется правоохранительными органами для создания картотеки преступной деятельности. Электронные банки данных с соответствующей информацией легко доступны государственным и региональным следственным учреждениям всей страны. Так, федеральное бюро расследования (ФБР) располагает общегосударственным банком данных, который известен как национальный центр криминалистической информации. Компьютеры используются правоохранительными органами не только в информационных сетях ЭВМ, но и в процессе розыскной работы. Например, в лабораториях криминалистов компьютеры помогают проводить анализ веществ, обнаруженных на месте преступления. Заключения компьютера-эксперта часто оказываются решающими в доказательствах по рассматриваемому делу.

Компьютер как средство общения людей . Если на одном компьютере работают хотя бы два человека, у них уже возникает желание использовать этот компьютер для обмена информацией друг с другом. На больших машинах, которыми пользуются одновременно десятки, а то и сотни человек, для этого предусмотрены специальные программы, позволяющие пользователям передавать сообщения друг другу. Стоит ли говорить о том, что как только появилась возможность объединять несколько машин в сеть, пользователи ухватились за эту возможность не только для того, чтобы использовать ресурсы удаленных машин, но и чтобы расширить круг своего общения. Создаются программы, предназначенные для обмена сообщениями пользователей, находящихся на разных машинах. Наиболее универсальное средство компьютерного общения – это электронная почта. Она позволяет пересылать сообщения практически с любой машины на любую, так как большинство известных машин, работающих в разных системах, ее поддерживают. Электронная почта - самая распространенная услуга сети Internet. В настоящее время свой адрес по электронной почте имеют приблизительно 20 миллионов человек. Посылка письма по электронной почте обходится значительно дешевле посылки обычного письма. Кроме того, сообщение, посланное по электронной почте дойдет до адресата за несколько часов, в то время как обычное письмо может добираться до адресата несколько дней, а то и недель.

Internet - глобальная компьютерная сеть, охватывающая весь мир. Сегодня Internet имеет около 15 миллионов абонентов в более чем 150 странах мира. Ежемесячно размер сети увеличивается на 7-10%. Internet образует как бы ядро, обеспечивающее связь различных информационных сетей, принадлежащих различным учреждениям во всем мире, одна с другой.

За исключением лишь небольшого числа одаренных людей, человечество с незапамятных времен смотрит на арифметические вычисления как на тяжелую нудную работу, от которой необходимо избавиться любой ценой и любыми доступными средствами. Долгую историю имеют конторские счеты (по существу это примитивное цифровое вычислительное устройство с выполнением операций вручную), которые, по-видимому, были изобретены независимо в различных частях мира и кое-где применяются до сих пор. После того как в конце XVI в. были изобретены логарифмы, незаменимым механическим инструментом стала логарифмическая линейка. Первая логарифмическая линейка появилась в 20-х годах XVII столетия. Она дала возможность выполнять более сложные вычисления, хотя аналоговый характер прибора (числа изображаются расстояниями) значительно ограничивает точность при многих расчетах. Тем не менее логарифмической линейкой по-прежнему широко пользуются математики, ученые и инженеры во всем мире. Существует также и ряд специализированных счетных устройств: таблицы готовых расчетов в бухгалтерии, автоматические весы в бакалейно-гастрономических магазинах или счетчики на автозаправочных станциях. Во всех этих устройствах используются заранее подготовленные таблицы или шкалы, позволяющие очень быстро производить операции умножения при различных денежных расчетах.

Такие технические приспособления распространены в настоящее время очень широко и служат простейшим способом избавления от большого объема простых, но утомительных арифметических вычислений. На несколько более высоком уровне сложности находятся конторские арифмометры и кассовые аппараты, которые легко выполняют большое число последовательных операций сложения и вычитания и печатают результаты выполняемых операций, а также различные промежуточные и общие суммы. На основе этих относительно простых аппаратов разработаны разнообразные более совершенные счетные машины.

Человек, пользующийся таким прибором, может и не иметь полного представления о том, как он устроен, но обычно ему нетрудно понять, что это просто удобное механическое приспособление для более эффективного выполнения той работы, которую он и сам мог бы сделать вручную с помощью карандаша и бумаги, если бы у него было достаточно времени и он мог работать без устали и никогда не ошибаться.

Аналогичные соображения применимы также и к более сложным настольным счетным машинам. Это механические цифровые устройства, предназначенные для выполнения основных арифметических действий (сложения, вычитания, умножения и деления) и имеющие ряд вспомогательных устройств для накопления результатов и выполнения операций сокращения. Более дешевые счетные машины обычно управляются вручную и их применяют, когда объем вычислений относительно невелик, а также для целей обучения. Для очень продолжительных вычислений, когда требуется большая скорость и гибкость, необходимы более крупные и более дорогие счетные машины. Обычно они приводятся в действие электромотором, хотя по принципу действия по-прежнему являются механическими. Настольные счетные машины такого общего типа используются уже очень много лет, и до самого последнего времени с их помощью выполняли практически все сколько-нибудь сложные научные расчеты. Огромные преимущества настольных счетных машин по сравнению с методами вычислений вручную общеизвестны. Числа вводятся в машину быстро и точно путем поворота ручек или нажима кнопок; все арифметические действия выполняются внутри самой машины; при тщательном планировании последовательности вычислений можно избежать записи большого числа промежуточных результатов. Разумеется, при вычислениях могут возникать ошибки, хотя и не так часто, как при работе вручную, поэтому обычно в последовательность вычислений включается ряд операций по проверке результата.

Появление настольных счетных машин, естественно, расширило область возможных вычислений, однако вскоре наступило время, когда был достигнут естественный предел быстродействия этих машин. Легко убедиться в том, что при выполнении большой последовательности вычислений, например при суммировании большого числа произведений, ограничивающим фактором оказывается не столько скорость работы самой машины, сколько время, необходимое для введения в нее чисел, чтения и переписывания результатов, а также принятия решений о последующих действиях. Поэтому в итоге время, требуемое для решения сложной задачи, уменьшается очень незначительно, даже если машина выполняет основные арифметические действия практически мгновенно.

Чем сложнее работа, тем больше будет сказываться усталость оператора и тем вероятнее возникновение ошибок. Кроме того, если вычисления определенного типа должны повторяться многократно, то правильная последовательность действий при одном вычислении не дает гарантии, что в следующий раз не будет допущена ошибка. Другая трудность состоит в том, что обычно для сокращения времени и повышения точности при продолжительных вычислениях целесообразно поручать основную работу опытному оператору, хотя это и означает, что составитель задачи должен затратить много труда на подготовку работы и необходимые объяснения оператору. И если этот же математический метод будет использоваться снова для других данных, то может случиться, что все эти объяснения придется давать вновь уже другому оператору.

Хотя настольные счетные машины представляют собой большой шаг вперед по сравнению с другими методами вычислений, их недостатки довольно очевидны, и поэтому появились серьезные основания для разработки машины совершенно другого типа. Соответствующая электронная схема, в которой используются лампы или транзисторы и электрические цепи, безусловно, позволяет гораздо быстрее выполнять основные арифметические действия, чем чисто механические устройства. Однако преимуществами этих средств нельзя воспользоваться, если вмешательство человека не будет сведено к минимуму. Это означает, что необходимо не только избавиться от медленной записи, чтения и передачи чисел человеком, но нужно каким-то образом перестроить весь план работы, с тем чтобы оператор не должен был принимать никаких решений в процессе вычислений. Именно в решении этих проблем, а не только в увеличении скорости внутренних операций состоит настоящая революция, вызванная современными автоматическими электронными вычислительными машинами.

Вычислительные машины начали разрабатывать в конце второй мировой войны. Первыми машинами, имевшими основные конструктивные особенности современных вычислительных устройств, были вычислительная машина EDSAC, начавшая работать в 1949 г. в Кембриджском университете, и вычислительная машина SEAC, изготовленная Национальным бюро стандартов США в 1950 г. В этих первых машинах использовались электронные лампы, которые в настоящее время заменены транзисторами, позволившими уменьшить габариты вычислительных машин и обладающими значительно более высокой надежностью. К настоящему времени достигнуты большие успехи в области микроминиатюризации аппаратуры. Все это позволит создать настольные электронные вычислительные машины и снизить продолжительность основных операций до наносекунд, что означает тысячи миллионов операций в секунду. В настоящее время выпущен ряд превосходных руководств, в которых читатель может найти детальное описание существующих машин и конкретные рекомендации по работе с ними.

Мы обсудим здесь лишь основные принципы в той мере, в какой они связаны с темой данной книги.

Рассмотрим важнейшие свойства современной электронной вычислительной машины. Прежде всего важно уяснить, что она по-прежнему выполняет те же основные арифметические действия, что и настольная счетная машина, и поэтому по существу делает то же, что в принципе может сделать человек, работающий только с бумагой и карандашом. Различие состоит, с одной стороны, в огромном увеличении технической эффективности, а с другой - в осуществлении логического контроля за последовательностью операций. Поэтому понять то, что в конечном счете делает вычислительная машина, ничуть не сложнее, чем понять обычный способ решения арифметических задач. Считать ли, что электронная вычислительная машина обнаруживает признаки интеллекта или что она способна выполнять работу, близкую к функциям мозга, в значительной мере зависит от того, как мы определяем эти понятия. Самое главное состоит в том, что вычислительная машина, как бы она ни была сложна и совершенна, по существу представляет собой лишь одно из очень сложных устройств, предназначенных для определенных целей, и как таковую ее следует рассматривать во многих отношениях в таком же плане, что и любую другую сложную научную аппаратуру, например электронный микроскоп или линейный ускоритель частиц.

В обычную настольную счетную машину вводится пара чисел для выполнения некоторого арифметического действия, например сложения, и эти числа могут храниться в ней после выполнения операции. В машине могут также храниться еще одно-два числа, например число, полученное в результате сложения или умножения нескольких чисел, или накопленная сумма произведений. Однако общая емкость запоминающего устройства редко превышает пять-шесть чисел, причем даже и в этом случае число разрядов чисел крайне ограниченно. В электронной вычислительной машине имеется соответствующее электромагнитное устройство, в котором может храниться несколько тысяч чисел (с весьма большим числом разрядов) в виде, позволяющем производить быструю выборку; на магнитном диске или магнитной ленте может храниться несколько миллионов чисел в форме, позволяющей производить относительно медленную выборку (медленную по электронным стандартам). Это дает возможность исключить вмешательство человека при обработке промежуточных результатов, а также осуществлять автоматическую обработку огромного множества численных данных. Поскольку данные записаны на перфокартах, бумажной ленте, магнитных дисках или магнитной ленте, они могут использоваться многократно без приложения умственных или зрительных усилий со стороны человека; они просто поступают на соответствующее внешнее считывающее устройство вычислительной машины.

Но самое главное состоит в том, что удалось разработать способы планирования всей последовательности вычислений. Для этого в вычислительную машину вводится программа команд, которая хранится там вместе с соответствующими данными. Эти команды записаны в соответствующем численном коде и связаны прежде всего с выполнением основных арифметических действий над парами чисел, хранящихся в определенных частях запоминающего устройства. Если программа и необходимые данные введены в машину, то все остальные операции выполняются самой машиной со скоростью, зависящей от электромагнитной схемы. Окончательные результаты либо записываются на перфокартах или бумажной ленте, либо подаются непосредственно на телетайп или другое воспроизводящее устройство. Программа для любой данной последовательности вычислений должна быть продумана очень тщательно. Зато когда программа составлена и как следует проверена, ее можно многократно использовать без дальнейшей проверки. Ясно, что это дает значительную экономию времени и труда. Надлежащим образом проверенную программу могут использовать тысячи раз многие люди, работающие на различных вычислительных машинах. Не менее важно и то, что определенная программа может содержать команду повторить выполнение какого-либо конкретного задания (например, решение определенной системы уравнений) несколько сотен тысяч раз, причем каждый раз с использованием различных данных. Тогда часть программы должна быть посвящена решению одной системы таких уравнений. Если эта часть программы составлена правильно, то в пределах данной программы к ней можно обращаться сколь угодно часто с полной уверенностью, что каждый раз решение уравнений будет производиться правильно. Этим устраняется один из важнейших недостатков настольных счетных машин, о котором уже говорилось выше, а именно то, что правильная работа настольной счетной машины в одном случае не гарантирует отсутствие ошибки при повторных вычислениях.

Работая на настольной счетной машине, оператор на всех этапах наблюдает за производимыми вычислениями. Если происходит что-либо необычное или непредвиденное, он сразу же может принять необходимые меры и таким путем избежать серьезных ошибок. Против применения электронных вычислительных машин часто возражают на том основании, что здесь существует возможность очень большого числа незамеченных ошибок на промежуточных этапах вычислений и ввиду этого окончательные результаты следует считать в высшей степени сомнительными.

К счастью, эту трудность можно в значительной мере исключить путем хорошего программирования. Как мы видели, в обычной настольной счетной машине также имеются очень большие возможности появления ошибок при повторных вычислениях. При этом только крупные ошибки выявляются сразу, а для того, чтобы предупредить накопление небольших ошибок, требуется проводить тщательные проверки на всех этапах. Эти проверки составляют важную часть всей последовательности вычислений. Но ведь такие же проверки составляют неотъемлемую часть программы электронной вычислительной машины. Вследствие своего большого быстродействия электронная вычислительная машина позволяет осуществить значительно больше арифметических проверок, чем настольная счетная машина. Следовательно, при хорошо составленной программе электронная вычислительная машина обеспечивает вовсе не меньшую, а значительно большую надежность результатов.

Выше шла речь об ошибках, появляющихся из-за недостаточного контроля за операциями, выполняемыми вычислительной машиной; но возможны также ошибки, обусловленные повреждениями электронной схемы. Для выявления таких ошибок можно, например, предусмотреть автоматическую остановку вычислительной машины при появлении ошибок, обнаруживаемых так называемой проверкой на четность. В большинстве машин числа хранятся в двоичной записи как последовательность нулей и единиц. Можно приписать дополнительную цифру, равную нулю или единице, в зависимости от того, четной или нечетной является сумма единиц в каждом хранящемся числе. В определенные моменты времени, например при считывании числа из запоминающего устройства, приписанную цифру можно сверить с самим числом. Такую схему проверки нельзя, конечно, считать абсолютно надежной, так как могут возникать компенсационные ошибки; но она все же очень полезна тем, что привлекает внимание к ошибкам, вызываемым неполадками в электронной схеме.

Таковы некоторые основные идеи, связанные с применением электронных вычислительных машин. Широкое распространение вычислительной техники радикально повлияло на наши вычислительные возможности, на масштабы обработки данных и в итоге - на общее направление научно-исследовательских работ и выбор методов их осуществления. К этому аспекту мы еще вернемся в разд. 5.5 и 5.6, а пока более внимательно рассмотрим некоторые основные задачи, для решения которых целесообразно применение вычислительных машин, и методы, позволяющие исследователям использовать преимущества этой новой техники.

Прекрасным пособием для знакомства с вычислительными методами может служить недавно вышедшая книга Холлингдейла и Тутилла .

В далеком 1984 году в США во время президентских выборов один из сенаторов, узнав, что для реализации проекта СОИ (стратегическая оборонная инициатива, больше известная как концепция «звездных войн») необходимо использование быстродействующих компьютеров (выполняющих обработку информации мгновенно) для принятия решений, совершенно справедливо заключил, что это обстоятельство фактически исключает вмешательство президента США в этот процесс. Поэтому он предложил избрать на пост главы государства компьютер системы управления вооруженными силами США. Этот забавный эпизод мировой истории красноречиво доказывает, что вычислительная техника (ВТ) стала неотъемлемой частью этой самой истории, прочно обосновалась в настоящем и, наверняка, не упустит своего и в будущем.

Избитая фраза о том, что «вычислительная техника и информационные технологии прочно вошли в нашу жизнь» переходит из одного учебника в другой, встречается почти во всех изданиях, посвященных компьютерам, с нее начинаются лекции и семинары и т.п. Поэтому и мы не станем от этого уходить, тем более что употребили ее в самом первом предложении, первого абзаца.

Однако многочисленные примеры использования ВТ в повседневной жизни в качестве торговых терминалов, персональных компьютеров (этот список можно продолжать до бесконечности) мы приводить не будем. Любой мало-мальски грамотный человек начинает использовать плоды информатизации почти с самого рождения и с удовольствием (или отвращением, на что у многих из нас достаточно оснований) продолжит этот список.

В 80-х гг. 20 в. журнал «Тайм» признал человеком года - ЭВМ. Наверняка многие из Вас, прочитав эту фразу, улыбнулись. Довольно забавно слышать, что «железка», которая стоит на вашем рабочем столе обладает таким высоким званием, однако не это ли верное доказательство тому, что ЭВМ не просто важная часть нашей жизни, без нее мы уже себя просто не мыслим. Компьютер часть нас самих, попробуйте опровергнуть это утверждение или согласится с ним, это уже не важно. Ясно одно от ЭВМ глупо отказываться, слишком много дел она взвалила на свои «плечи».

Строго говоря, электронная вычислительная машина (ЭВМ) или компьютер - это комплекс аппаратно-программных средств, предназначенный для автоматической обработки информации необходимой для решения задачи, которую поставил пользователь . Аппаратную часть вычислительной техники и программное обеспечение мы рассмотрим далее в теме 3, а сейчас хотелось бы подробнее остановиться на пользователе. В качестве пользователя всегда выступает человек. Очень примечательным является тот факт, что понятие «пользователь» постоянно эволюционировало. На заре появления вычислительной техники использовали ЭВМ, как правило, ученые, работавшие на военные ведомства своих стран (проект машины UNIVAC , США 1945г.). Затем, по мере того как единица времени работы на ЭВМ стала дешеветь, доступ к их вычислительным мощностям получили ученые и инженеры гражданских специальностей. С развитием микроэлектроники и информатики, а они поистине, двигались с колоссальной скоростью, стали появляться серийно выпускаемые компьютеры, чей размер уменьшался во столько же раз, на сколько порядков возрастала их производительность. Сейчас, персональные компьютеры доступны, практически, каждому. Они занимают площадь, которая равна нескольким десяткам квадратных сантиметров, вместо нескольких этажей огромного здания всего каких-то 60 лет назад. Пользователь стал единоличным обладателем персональной ЭВМ.

ПРИМЕЧАНИЕ

Само слово компьютер , как не трудно догадаться, происходит от английских слов «to compute» , «computer» , которые переводятся как «вычислять», «вычислитель». Интересным является тот факт, что первоначально в английском языке это слово означало человека, выполняющего арифметические вычисления с привлечением или без привлечения механических устройств. И только спустя много лет значение этот слова было перенесено на сами машины. Впервые определение слова компьютер было дано в 1897 году в Оксфордском английском словаре. Его составители тогда понимали компьютер, как механическое вычислительное устройство.

Во всем многообразии и разнородности армий пользователей особая роль принадлежит трем категориям людей - заказчикам работ, которые должны быть выполнены на ЭВМ, проектировщикам программного обеспечения и программистам. Поэтому, очень часто, под словом «пользователь» подразумевается именно «конечный пользователь» того продукта, который необходим «заказчику», придуман «проектировщиком» и реализован «программистом». В последнее время обособилась еще одна категория пользователей ЭВМ - «инженер по знаниям» (когнитолог), который является ключевым звеном в процессе создания экспертных систем различного назначения. Проблемы разработки баз знаний и экспертных систем выходят за рамки данной книги, но подробно рассмотрены в .

Как уже отмечалось выше, ЭВМ автоматически обрабатывают информацию, требуемую для решения поставленной задачи. Процесс обработки информации значительно более эффективен в том случае, когда он выполняется внутри некоторой системы. Очень емкое и точное определение информационной системы (ИнС) дано в книге , где под информационной системой понимают систему, в которой предметом и продуктом труда является информация.

Особенностью информационных систем является то, что они относятся к классу материальных систем, а их конечный продукт (информация) не материален. Любой материальный продукт производится по определенной технологии, которая объединяет методы и средства его получения. Так, например, одна из технологий получения серы из сероводородсодержащих газов основана на методе Клауса и использует установку, состоящую из двух термических и двух (реже трех) каталитических реакторов. Технология, которая использует методы преобразования информации и вычислительную технику для их реализации, а на выходе получает информацию, называется информационной технологией (ИТ). Современные ИТ обеспечивают получение, преобразование и передачу огромных массивов информации на большие расстояния за строго определенные промежутки времени с целью обеспечения своевременного решения задачи. В качестве сфер применения современных ИТ можно указать следующие: системы автоматизированного проектирования (САПР/ CAD ); системы управления производственными предприятиями (УПП/ ERP ); системы управления технологическими процессами и производствами (АСУТП/ SCADA ); банковские системы; издательские системы; цифровая сотовая связь и Интернет и.т.п.

Вычислительная техника создавалась для облегчения и ускорения сложных математических расчетов, т.е. именно для вычислений, что и нашло свое отражение в самом ее названии. Первые крупные ЭВМ (1940-х годов и последующих десятилетий XX в.) использовались в области атомной физики, аэродинамики, баллистики и ряде других областей, в которых расчеты протекающих процессов очень сложны и трудоемки. Уже в этот период успехи вычислительной техники были весьма впечатляющими. Появились сенсационные сообщения о том, что ЭВМ за несколько часов выполнила работу, которую несколько десятков инженеров и техников выполняли с помощью логарифмических линеек и арифмометров несколько месяцев. С легкой руки журналистов вычислительные машины стали называть не иначе как «думающие машины» или «электронный мозг», что, строго говоря, не соответствует истине, поскольку ЭВМ не «думает», а последовательно выполняет команды программы, составленной человеком.

Само же составление программы хотя и требовало больших затрат времени, но обходилось во много раз дешевле, поскольку стоимость первых ЭВМ была очень высока. Такие дорогостоящие высокопроизводительные ЭВМ могли приобрести только крупные государственные вычислительные центры и очень богатые фирмы. Поэтому те предприятия и организации, которым необходимо было производить расчеты на ЭВМ, готовили программы для своих расчетов, а затем сдавали их для выполнения в вычислительные центры, оплачивая каждый час работы ЭВМ. На языке того периода - «покупали машинное время». Таким образом, в ту пору пользователь и владелец ЭВМ были разными субъектами.

По мере развития вычислительной техники стоимость ее существенно снижалась. С 1980-х годов персональный компьютер стал доступен не только любому специалисту в какой угодно области человеческой деятельности, но и любому частному лицу. В те же годы область применения вычислительной техники значительно расширилась, поскольку оказалось возможным представлять в цифровом виде самую разнообразную информацию.

Электронные вычислительные машины (ЭВМ) появились чуть более полувека тому назад. За это время их размеры уменьшились в тысячи раз, а производительность увеличилась в миллионы раз. Если в первые 10 лет своего развития ЭВМ создавались из отдельных (дискретных) элементов, то затем научные и технологические достижения микроэлектроники позволили в одном элементе (т.е. в одном корпусе) размещать сразу несколько полупроводниковых компонентов.

От одного транзистора в корпусе -- до десятков миллионов в современном микропроцессоре. Никакая другая область техники, кроме космической, не может похвастаться такими бурными, поистине революционными изменениями за последние полвека.

Помимо быстрого развития средств вычислительной техники надо отметить и существенные изменения в сфере ее приложения. Создававшиеся именно как средства для облегчения вычислений ЭВМ уже давно используются в большей степени как средства обработки информации в самом широком смысле этого слова.

Все, что может узнать человек благодаря своим пяти органам чувств, да плюс то, что он может узнать благодаря самым разнообразным измерительным методам и приборам (а они чувствительны и к тем явлениям, которые человек не воспринимает), ЭВМ может обработать (т.е. преобразовать) и запомнить. Поэтому в настоящее время ЭВМ -- это, прежде всег,о средство обработки информации.

В качестве такового ЭВМ является основой современных информационных технологий, с помощью которых обеспечивается ускоренное развитие самых разных областей человеческой деятельности.

Широкое применение ЭВМ (прежде всего персональных компьютеров) -- это то новое, что меняет образ жизни всего челове-чества.

В нашей стране действует специальный стандарт на термины и определения в области систем обработки информации (ГОСТ 15971 -- 90). Согласно этому стандарту вычислительная машина (ВМ) - это совокупность технических средств, создающая возможность про-ведения обработки информации и получение результата в необходимой форме.

А электронная ВМ (ЭВМ) -- это вычислительная машина, основные функциональные устройства которой выполнены на электронных компонентах.

Совокупность технических средств и программного обеспечения, а также методов обработки информации и действий персонала, обеспечивающая выполнение автоматизированной обработки информации, составляет систему обработки информации. А обработка информации -- это систематическое выполнение операций над данными, представляющими предназначенную для обработки информацию.

Понятие «данные» является очень важным в вычислительной технике. Данные -- это информация, представленная в виде, пригодном для обработки автоматическими средствами при возможном участии человека.

Следует также различать понятия «автоматический» и «автоматизированный». Первое из них означает, что действие происходит без участия человека. Второе понятие используется для обозначения совместных действий автоматических устройств и человека.

На современном этапе развития ВТ широко используются вычислительные машины и их комплексы. Кроме настольного ПК получил большое распространение ноутбук -- компьютер в виде небольшой папки или портфеля. Питается он от аккумулятора, поэтому работать на нем можно где угодно. Появились карман-ные ПК.

За последние 10--15 лет сотни миллионов компьютеров объединились в сети, что еще более расширило область применения ВТ. Возросла роль ЭВМ как средства связи.

С помощью компьютеров стало возможным пересылать инфор-мацию на тысячи километров за доли секунды, с помощью электронной почты -тексты и картинки, с помощью Интернет-телефонии -- голосовые сообщения.

Таким образом, стали использоваться и коммуникационные возможности компьютеров, возникли новые информационно-ком-муникационные технологии (ИКТ).

Обзор