PartMaker: автоматизированная разработка управляющих программ для современного оборудования с ЧПУ. Разработка управляющей программы для станка с числовым программным управлением Автоматизированная разработка уп для станков с чпу

2.1. Возможные способы разработки управляющих программ

для станков с ЧПУ

Управляющие программы для обработки деталей на станках с ЧПУ могут разрабатываться следующими способами:

· Ручным способом;

· Подготовка управляющих программ с применением систем автоматического программирования (САП);

· Программирование с применением систем CAD/CAM;

· Диалоговое программирование непосредственно с пульта управления станком.

· В процессе сканирования (оцифровывания) существующей модели.

Каждый из этих способов в той или иной степени находит применение.

2.2. РУЧНОЕ ПРОГРАММИРОВАНИЕ

Ручное программирование является весьма утомительным занятием. Однако все программисты-технологи обязаны иметь хорошее понимание техники ручного программирования независимо от того, действительно ли ручное программирование ими используется.

Можно сопоставить ручное программирование для ЧПУ с выполнением арифметических вычислений при помощи ручки и бумаги в противоположность вычислениям на электронном калькуляторе. Преподаватели математики единодушно соглашаются с тем, что школьники сначала должны научиться выполнять арифметические вычисления вручную. И только потом использовать калькулятор для того, чтобы ускорить процедуру нудных вычислений.
Все еще остается немало предприятий, в которых применяют исключительно ручное программирование для станков с ЧПУ. Действительно, если на предприятии используются несколько станков с ЧПУ, а изготавливаемые детали предельно просты, то грамотный технолог-программист с великолепной техникой ручного программирования будет способен превзойти по производительности труда программиста-технолога, использующего автоматизированные средства программирования.

Наконец, даже в случае применения автоматизированных систем программирования нередко возникает потребность коррекции кадров УП вследствие обнаружения ошибок на этапе отработки и проверки программы. Также, общепринятой является коррекция кадров УП после ряда первых пробных прогонов на станке с ЧПУ. Если для выполнения этих, часто элементарных корректировок программист должен опять использовать автоматизированные средства программирования, то это неоправданно удлинит процесс подготовки производства.

Программист должен хорошо представлять возможности того станка, для которого разрабатывается УП. Информация, поясняющая конструкцию станка, обычно приводится в сопроводительной документации на станок. В документации можно найти ответы на большинство вопросов о характеристиках станка и о его конструкции. Например:

1. Каковы максимальные обороты шпинделя станка?

2. Сколько диапазонов скоростей имеет шпиндель?

3. Сколь велика мощность приводного электродвигателя для каждой из координатных осей?

4. Каково максимальное расстояние перемещения инструмента или стола вдоль каждой координатной оси?

5. Сколько инструментов может поместиться в инструментальной головке (магазине)?

6. Какова наибольшая скорость резания?

Это всего лишь малая часть вопросов, которые нужно хорошо представлять себе перед тем, как начать работать с любым новым станком с ЧПУ. Кроме всего прочего, программист-технолог должен познакомиться с дополнительными компонентами станка с ЧПУ. В ряде случаев дополнительные узлы могут быть изготовлены производителем станка, а в других - сторонними организациями. В любом случае нужно внимательно изучить руководство по дополнительным элементам оборудования с ЧПУ.

К числу дополнительных элементов станка относятся: измерители длины рабочей части инструмента, устройства смены паллет, устройство очистки и охлаждения смазочно-охлаждающей жидкости и многое другое. Список дополнительного оборудования непрерывно пополняется.

2.2.1. Функциональная схема подготовки управляющих программ и подготовки производства для обработки деталей на станках с ЧПУ

В случае ручного программирования все этапы подготовки УП и подготовки производства для обработки партии деталей на станке с ЧПУ показаны на функциональной схеме, представленной на рис. 2.1.

Начальные два этапа, предусматривающие разработку маршрутного и операционного технологических процессов подробно изучаются в технологических дисциплинах и поэтому в данном курсе не рассматриваются. Аналогично не затрагиваются и все проблемы, относящиеся к подготовке производства: разработка и изготовление приспособления, специального инструмента и контрольно-измерительной оснастки, а также разработка всей технологической документации, поступающей на рабочее место перед запуском в обработку партии деталей.

Разбор этапа «Расчёт программы», которая включает в себя процедуры выбора системы координат детали, расчёта опорных точек на контуре детали, расчёта эквидистанты, аппроксимации контура, а также заполнения расчётных таблиц будет осуществлён позже, после краткого рассмотрения всех остальных этапов.

Выполнение этапа «Запись программы на программоноситель» заключается в переносе информации из таблиц на какой-либо программоноситель. В случае ручной подготовки программ программоносителем может быть перфолента - наиболее распространённый программоноситель, ранее применяемый для оборудования с ЧПУ. При этом используется устройство, называемое перфоратором. В состав перфоратора входят: непосредственно перфорирующее устройство, пробивающее кодовые отверстия на ленте; электрическая или механическая пишущая машинка, печатающая на бумаге перфорируемый знак; считывающее устройство для контроля и реперфорирования программ.

Этап «Контроль программы» имеет своей целью выявление ошибок в программе и их исправление вне станка. Ошибки в УП могут возникать как при подготовке исходных данных, так и в процессе расчёта и записи программы на программоноситель.

Рис. 2.1. Этапы подготовки УП и подготовки производства для обработки

партии деталей на станке с ЧПУ 13

Ошибки бывают: геометрические, технологические и ошибки перфорации. Геометрические ошибки появляются при задании геометрии детали, расчёте координат опорных точек, положений инструмента и рабочих органов станка.

Технологические ошибки связаны с неправильным заданием технологических параметров: величины скорости подачи, частоты вращения шпинделя, глубины резания, различных технологических команд. Ошибки перфорации могут возникнуть при перфорировании ленты за счёт неточных действий машинистки или сбоев самого перфоратора.

Заключительный этап подготовки УП - это этап «Отработка программы на станке» самый трудоёмкий и ответственный этап, который требует совместной работы технолога – программиста, наладчика станка и его оператора. Он возможен только тогда, когда все работы по подготовке производства и запуска данной партии деталей завершены. К этому моменту на станок должны поступить: заготовка, зажимное приспособление, режущий инструмент, вспомогательная технологическая оснастка /инструментодержатели, переходники, зажимные втулки и т.п./, контрольно-измерительная оснастка, управляющая программа, записанная на программоноситель, распечатка программы, необходимая технологическая документация - операционная карта, карта наладки станка и карта наладки инструмента.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ МАМИ

Факультет: «Механико-технологический»

Кафедра: «Автоматизированные станочные системы и инструмент»

КУРСОВАЯ РАБОТА

по дисциплине

Программированная обработка на станках с ЧПУ и САП

Разработка управляющей программы для станка с числовым программным управлением

Москва 2011 г.

Ведение

Технологическая подготовка управляющей программы

1 Выбор технологического оборудования

2 Выбор системы УЧПУ

3 Эскиз заготовки, обоснование метода ее получения

4 Выбор инструмента

5 Технологический маршрут обработки детали

6 Назначение режимов обработки

Математическая подготовка управляющей программы

1 Кодирование

2 Управляющая программа

Выводы по работе

Список используемой литературы

кодирование станок деталь программное управление

2. Введение

В настоящее время широкое развитие получило машиностроение. Его развитие идет в направлениях существенного повышения качества продукции, сокращения времени обработки на новых станках за счет технических усовершенствований.

Современный уровень развития машиностроения предъявляет следующие требования к металлорежущему оборудованию:

высокий уровень автоматизации;

обеспечение высокой производительности, точности и качества

выпускаемой продукции;

надежность работы оборудования;

высокая мобильность обусловлена в настоящее время быстросменностью объектов производства.

Первые три требования привели к необходимости создания специализированных и специальных станков-автоматов, а на их базе автоматических линий, цехов, заводов. Четвертая задача, наиболее характерная для опытного и мелкосерийного производств, решается за счет станков с ЧПУ. Процесс управления станком с ЧПУ представляется, как процесс передачи и преобразования информации от чертежа к готовой детали. Основной функцией человека в данном процессе является преобразование информации заключенной в чертеже детали в управляющую программу, понятную ЧПУ, что позволит управлять непосредственно станком таким образом, чтобы получить готовую деталь, соответствующую чертежу. В данном курсовом проекте будут рассматриваться основные этапы разработки управляющей программы: технологическая подготовка программы, и математическая подготовка. Для этого на основе чертежа детали будут выбраны: заготовка, система ЧПУ, технологическое оборудование.

3. Технологическая подготовка управляющей программы

3.1 Выбор технологического оборудования

Для обработки данной детали выбираем токарный станок с ЧПУ модели 16К20Ф3Т02.

Данный станок предназначен для токарной обработки деталей тел вращения со ступенчатым и криволинейным профилями за один или несколько рабочих ходов в замкнутом полуавтоматическом цикле. Кроме того, в зависимости от возможностей устройства ЧПУ на станке можно нарезать различные резьбы.

Станок используется для обработки деталей из штучных заготовок с зажимом в механизированном патроне и поджимом при необходимости центром, установленном в пиноли задней бабки с механизированным перемещением пиноли.

Технические характеристики станка:

Наименование параметраВеличина параметраНаибольший диаметр обрабатываемого детали: над станиной над суппортом 400 мм 220 ммДиаметр прутка проходящего через отверстие50 ммЧисло инструментов6Число частот вращения шпинделя12Пределы частот вращения шпинделя20-2500 мин-1Пределы рабочих подач: продольных поперечных 3-700 мм/мин 3-500 мм/минСкорость быстрых ходов: продольных поперечных 4800 мм/мин 2400 мм/минДискретность перемещений: продольных поперечных 0,01 мм 0,005 мм

3.2 Выбор системы УЧПУ

Устройство УЧПУ - часть системы ЧПУ предназначена для выдачи управляющих воздействий исполнительным органом станка в соответствии с управляющей программой.

Числовое программное управление (ГОСТ 20523-80) станком - управление обработкой заготовки на станке по управляющей программе, в которой данные заданы в цифровой форме.

Различают ЧПУ:

-контурное;

-позиционное;

позиционно-контурное (комбинированное);

адаптивное.

При позиционном управлении (Ф2) перемещение рабочих органов станка происходит в заданные точки, при чем траектория перемещения не задается. Такие системы позволяют обработать только прямолинейные поверхности.

При контурном управлении (Ф3) перемещение рабочих органов станка происходит по заданной траектории и с заданной скоростью для получения необходимого контура обработки. Такие системы обеспечивают работу по сложным контурам, в том числе криволинейные.

Комбинированные системы ЧПУ работают по контрольным точкам (узловым) и по сложным траекториям.

Адаптивное ЧПУ станком обеспечивает автоматическое приспосабливание процесса обработки заготовки к изменяющимся условиям обработки по определенным критериям. Деталь, рассматриваемая в данной курсовой работе, имеет криволинейную поверхность (галтель), следовательно, первая система ЧПУ здесь не применятся. Возможно использование последних трех систем ЧПУ.

С экономической точки зрения целесообразно в данном случае использовать контурное или комбинированное ЧПУ, т.к. они менее дороги, чем остальные и в то же время обеспечивают необходимую точность обработки.

В данном курсовом проекте была выбрана система УЧПУ «Электроника НЦ-31», которая имеет модульную структуру, что позволяет увеличивать число управляемых координат и предназначено в основном для управления токарными станками с ЧПУ со следящими приводами подач и импульсными датчиками обратной связи.

Устройство обеспечивает контурное управление с линейно-круговой интерполяцией. Управляющая программа может вводиться как непосредственно с пульта(клавиатуры), так и с кассеты электронной памяти.

3.3 Эскиз заготовки, обоснование метода ее получения

В данной курсовой работе условно принимаем тип производства рассматриваемой детали как мелкосерийный. Поэтому в качестве заготовки для детали выбран пруток диаметра 95 мм простого сортового проката (круглого профиля) общего назначения из стали 45 ГОСТ 1050-74 с твердостью НВ=207…215 .

Простые сортовые профили общего назначения используется для изготовления гладких и ступенчатых валов, станков диаметром не более 50 мм, втулок диаметром не более 25 мм, рычагов, клиньев, фланцев.

На заготовительной операции втулок нарезается в размер 155 мм, затем на фрезерно-центровальном станке торцуется в размер 145 мм, и здесь же одновременно выполняются центровые отверстия. Поскольку при установке детали в центрах происходит совмещение конструкторской и технологической базы, а погрешность в осевом направлении мала, то ей можно пренебречь.

Чертеж заготовки после фрезерно-центровальной операции представлен на рисунке 1.

Рисунок 1 - чертеж заготовки

3.4 Выбор инструмента

Инструмент Т1

Для обработки основных поверхностей черновой и чистовой выбираем правый проходной резец с механическим креплением пластины DNMG110408 из твердого сплава GC1525 и прижимом повышенной жесткости (рис. 2).

Рисунок 2 - правый проходной резец

Krb, ммf1, ммh, ммh1, ммl1, ммl3, ммγλsЭталонная пластина9302025202012530,2-60-70DNMG110408

Инструмент Т2


Рисунок 3 - сборный отрезной резец

la, ммar, ммb, ммf1, ммh, ммh1, ммl1, ммl3, ммЭталонная пластина4102020,7202012527N151.2-400-30

Инструмент Т3

Для сверления заданного отверстия выбираем сверло из твердого сплава GC1220 для сверления под резьбу M10 с цилиндрическим хвостовиком (рис. 4).

Рисунок 4 - сверло

Dc, ммdmm, ммD21 max, ммl2, ммl4, ммl6, мм91211,810228,444

Инструмент Т4

Для рассверливания заданного отверстия выбираем сверло из твердого сплава GC1220 с цилиндрическим хвостовиком (рис. 5).

Dc, ммdmm, ммl2, ммl4, ммl6, мм20201315079

Инструмент Т5

Для выполнения внутренней резьбы M10×1 выбираем метчик

ГОСТ 3266-81 из быстрорежущей стали с винтовыми канавками (рис.5).

Рисунок 5 - метчик

3.5 Технологический маршрут обработки

Технологический маршрут обработки детали должен содержать наименование и последовательность переходов, перечень обрабатываемых на переходе поверхностей и номер используемого инструмента.

Операция 010 Заготовительная. Прокат. Отрезать заготовку Ø 95 мм в размер 155 мм, выполнять центровые отверстия до Ø 8 мм.

Операция 020 Фрезерно-центровальная. Фрезеровать торцы в размер 145 мм.

Операция 030 Токарная: установить заготовку в переднем ведущем и заднем вращающемся центрах.

Установ А

Переход 1

Инструмент Т1

Точить предварительно:

·конус Ø 30 мм до Ø 40

·Ø 40

·конус Ø 40 мм до Ø 60 мм от длины 60 мм до длины 75 мм от торца заготовки

·Ø 60

·Ø 60 мм до Ø 70 по дуге радиусом 15 мм от длины 85 мм от торца заготовки

·Ø 70

·Ø 70 мм до Ø 80 мм на длине 120 мм от торца заготовки

·Ø 80 мм до Ø 90

·Ø 90

Оставить припуск на чистовую обработку 0,5 мм на сторону

Переход 2

Инструмент Т1

Точить окончательно по переходу 1:

·конус Ø 30 мм до Ø 40 мм до длины 30 мм от торца заготовки

·Ø 40 мм от длины 30 мм на длину 30 мм от торца заготовки

·конус Ø 40 мм до Ø 60 мм от длины 60 мм до длины 75 мм от торца заготовки

·Ø 60 мм от длины 75 мм до длины 85 мм от торца заготовки

·Ø 60 мм до Ø 70 по дуге радиусом 15 мм от длины 85 мм от торца заготовки

·Ø 70 мм от длины 100 мм до длины 120 мм от торца заготовки

·Ø 70 мм до Ø 80 мм на длине 120 мм от торца заготовки

·Ø 80 мм до Ø 90 мм по дуге радиусом 15 мм от длины от длины 120 мм от торца заготовки

·Ø 90 мм от длины 135 мм до длины 145 мм от торца заготовки

Переход 3

Инструмент Т2

·Точить прямоугольную канавку шириной 10 мм с диаметра 40 до диаметра 30 мм на расстоянии 50 мм от торца заготовки.

Установ Б

Переход 1

Инструмент Т3

·Сверлить отверстие Ø9 глубиной 40 мм.

Переход 2

Инструмент Т4

·Рассверлить отверстие с Ø9 до Ø20 до глубины 15 мм.

Переход 3

Инструмент Т5

·Нарезать резьбу метчиком М10×1 на глубину 30 мм.

Операция 040 Промывочная.

Операция 050 Термическая.

Операция 060 Шлифовальная.

Операция 070 Контрольная.

3.6 Назначение режимов обработки

Установ А

Переход 1 - черновое точение

Инструмент Т1

2. Глубину резания при предварительном точении стали проходным резцом с твердосплавной пластиной выбираем t = 2,5 мм.

.При точении стали и глубине резания t = 2,5 мм выбираем подачу S = 0,6 мм/об.

.

.Скорость резания

Сv

КMV = 0,8 (, табл. 4 стр. 263)

КПV = 0,8 (, табл. 5 стр. 263)

КИV = 1 (, табл. 6 стр. 263)

6.Число оборотов шпинделя.

7.Сила резания.

где: Ср

(, табл. 9 стр. 264)

8.Мощность резания.

Переход 2 - чистовое точение

Инструмент Т1

.Определение длины рабочего хода L = 145 мм.

2. Глубину резания при предварительном точении стали проходным резцом с твердосплавной пластиной выбираем t = 0,5 мм.

.При точении стали и глубине резания t = 0,5 мм выбираем подачу S = 0,3 мм/об.

.Стойкость инструмента Т = 60 мин.

.Скорость резания

Сv = 350, x = 0,15, y = 0,35, m = 0,2 (, табл. 17 стр. 269)

КMV = 0,8 (, табл. 4 стр. 263)

КПV = 0,8 (, табл. 5 стр. 263)

КИV = 1 (, табл. 6 стр. 263)

6.Число оборотов шпинделя.

7.Сила резания.

где: Ср = 300, х = 1, у = 0,75, n = -0,15 (, табл. 22 стр. 273)

(, табл. 9 стр. 264)

8.Мощность резания.

Переход 3 - точение канавок

Инструмент Т2

.Определение длины рабочего хода L = 10 мм.

2. При нарезании канавок глубина резания равна длине лезвия резца

.При точении стали и глубине резания t = 4 мм выбираем подачу S = 0,1 мм/об.

4.Стойкость инструмента Т = 45 мин.

.Скорость резания

Компания Metal Working Group оказывает профессиональные конструкторские услуги в сфере машиностроения.

Нами выполняется разработка управляющих программ для станков с ЧПУ и их подготовка, при помощи СAM приложений для ЧПУ Siemens Sinumerik , Fanuc , Mazatro l, Fagor .

Только у нас имеется лицензионное программное обеспечение для написания программ для станков с ЧПУ Mazak - MAZATROL Matrix CAM .

Для других систем ЧПУ написание программ для станков с ЧПУ и подготовка ведется в программах SprutCAM , Cimco , CAMWorks .

У нас имеется большая база постпроцессоров практически для всех видов станков с ЧПУ.

Так же возможно написание в ручную (G-, M- коды ) разрабатываемых управляющих программ для станков с ЧПУ.

Выполняем написание управляющих программ для стоек ЧПУ LJUMO (Люмо) и К524 .

Разрабатываем необходимую техническую документацию.

В комплексе предлагаем разработку 3D модели для станков ЧПУ по весьма демократичным ценам

Имеется богатый опыт создания 3d моделей для станков ЧПУ. Глубокое знание всего технологического процесса даёт нашим специалистам конкурентное преимущество. Мы создаём готовые 3d модели для станков ЧПУ высокого качества с учётом всех пожеланий заказчика.

Cоздаём универсальные 3D модели для станков с ЧПУ. Это значит, что наши 3D модели для станков ЧПУ могут быть использованы в любой программе, предназначенной для обработки по этой технологии.

Обратившись в нашу компанию, вы получите:

В сфере разработки управляющих программ и 3D моделей для станков с ЧПУ мы работаем с заказами повышенной сложности. Сотрудничаем заказчиками разного уровня: малым и среднем бизнесом, крупными предприятиями и частными клиентами.

У нас вы найдете доступные цены, сжатые сроки выполнения проектов и качество выполняемой работы.

Оценка стоимости Вашего заказа нашими специалистами проводится БЕСПЛАТНО .
Время оценки стоимости заказа занимает менее
2 часов .

С полным списком наших услуг, можете ознакомиться в разделе Наши услуги

Если у вас возникли вопросы, будем рады вам ответить.

О станках ЧПУ

Современные станки ЧПУ отличаются высокой эффективностью управления, которая достигается за счёт системы числового программного управления. Все операции производятся на основе параметров, которые задаёт оператор станка. Такая система не требует присутствия большого количества персонала, что делает процесс управления станком ЧПУ выгодным и доступным для широкого круга пользователей.

Современные станки ЧПУ оборудованы системами самонастройки. В ходе работы над первой деталью система проводит оптимизацию настроек, с учётом которых идёт дальнейшая работа. После получения оптимальных параметров работы идёт обработка всей партии. Такая технология может быть применена в различных технологиях обработки.

Основным преимуществами работы станков ЧПУ являются:

  • Оптимизация трудозатрат (значительное уменьшение количество работников);
  • Оптимизация затрат на оборудование и организацию рабочих площадей (один станок ЧПУ заменяет несколько обычных);
  • Увеличение производительности и коэффициентов эффективности рабочего времени;
  • Сокращение сроков производства (на 50%);
  • Увеличения показателей точности производимых работ (на 30-50 %).

Перед любым владельцем станка с ЧПУ встает вопрос выбора программного обеспечения. Софт, используемый для подобного технологического оборудования, должен быть многофункциональным и простым в использовании. Желательно приобретать лицензионные программные продукты. В этом случае программы для станков с ЧПУ не будут зависать, что позволит повысить эффективность производственных процессов.

Набор программного обеспечения для станков с ЧПУ

Выбор софта во многом зависит от типа оборудования и тех задач, которые пользователь намерен решить. Однако существуют универсальные программы, которые можно использовать практически для всех видов станков с ЧПУ. Наибольшее распространение получили следующие продукты:


1. . Этот программный пакет был разработан для моделирования и проектирования изделий, изготавливаемых на станках. Он оснащен функцией автоматического генерирования моделей из плоских рисунков. Пакет программ ArtCAM содержит все необходимые инструменты для дизайна креативных изделий и создания сложных пространственных рельефов.
Стоит отметить, что данный софт позволяет использовать трехмерные шаблоны для создания проектов будущих изделий из простых элементов. Кроме того, программа позволяет пользователю вставлять один рельеф в другой, как в двухмерном рисунке.


2. Универсальная программа управления LinuxCNC. Функциональным назначением этого софта является управление работой станка с ЧПУ, отладка программы обработки деталей и многое другое.
Подобный программный пакет можно использовать для обрабатывающих центров, фрезерных и токарных станков, а также машин для термической или лазерной резки.
Отличием этого продукта от других программных пакетов является то, что его разработчики частично совместили его с операционной системой. Благодаря этому программу LinuxCNC отличается расширенными функциональными возможностями. Скачать этот продукт можно совершенно бесплатно на сайте разработчика. Она доступна как в виде инсталяционного пакета, так и в виде LifeCD.
Пользовательский интерфейс этого программного обеспечения интуитивно понятный и доступный. Для бесперебойного функционирования софта на жестком диске компьютера должно быть не меньше 4 гигабайтов свободной памяти. Подробное описание программы LinuxCNC можно найти в свободном доступе в интернете.


3. . У этого программного обеспечения огромная армия поклонников во всех странах мира. Софт используется для управления фрезерными, токарными, гравировальными и другими видами станков с ЧПУ. Этот пакет программ можно установить на любой компьютер с операционной системой Windows. Преимуществом использования данного софта является его доступная стоимость, регулярные обновления, а также наличие русифицированной версии, что облегчает использование продукта оператором, не владеющим английским языком.



4. Mach4. Это новейшая разработка компании Artsoft. Mach4 считается преемницей популярной программы Mach3. Программа считается одной из самых быстрых. Ее принципиальное отличие от предыдущих версий заключается в наличии интерфейса, который взаимодействует с электроникой. Это новое программное обеспечение может работать с большими по объему файлами в любой операционной системе. Пользователю доступно руководство по использованию программы Mach4 на русском языке.



5. MeshCAM. Это пакет для создания управляющих программ для станков с ЧПУ на основе трехмерных моделей и векторной графики. Примечательно, что пользователю необязательно обладать богатым опытом CNC-программирования, чтобы освоить этот софт. Достаточно обладать базовыми навыками работы на компьютере, а также точно задавать параметры, по которым будет производиться обработка изделий на станке.
MeshCAM идеально подходит для проектирования двухсторонней обработки любых трехмерных моделей. В этом режиме пользователь сможет быстро обрабатывать на станке объекты любой сложности.


6. SimplyCam. Это компактная и многофункциональная система для создания, редактирования, сохранения чертежей в формате DXF. Это обеспечение генерирует управляющие программы и G-коды для станков с ЧПУ. Они создаются по растворным рисункам. Пользователь может создать изображение в одной из графических программ своего компьютера, а затем загрузить его в SimplyCam. Программа оптимизирует этот рисунок и переведет его в векторный чертеж. Пользователь также может использовать такую функцию, как ручная векторизация. В этом случае изображение обводится стандартными инструментами, которые используются в AutoCAD. SimplyCam создает траектории обработки изделий на станках с ЧПУ.



7. CutViewer. Это программа имитирует обработку с удалением материала на двухосевых станках с ЧПУ. С ее помощью пользователь может получить визуализацию обрабатываемых заготовок и деталей. Использование этого софта позволяет повысить производительность технологического процесса, устранить имеющиеся ошибки в программировании, а также сократить временные затраты на проведение отладочных работ. Программа CutViewer совместима с широким спектром современного станочного оборудования. Ее действенные инструменты позволяют обнаружить серьезные ошибки в технологическом процессе и своевременно их устранить.



8. CadStd. Это простая в использовании чертежная программа. Она используется для создания проектов, схем и графики любой сложности. С помощью расширенного набора инструментов этой программы пользователь может создать любые векторные чертежи, которые могут использоваться для проектирования фрезерной или плазменной обработки на станках с ЧПУ. Созданные DXF-файлы можно впоследствии загрузить в CAM-программы, чтобы генерировать правильные траектории обработки деталей.

Проблемы