Работа usb порта интерфейс программирования. Практическое использование интерфейса USB в PIC контроллерах. Ожидание подключения к ПК

Введение
Для кого эта книга
Что вы найдете в книге
Программные требования
Аппаратные требования
О программном коде
Краткое описание глав
Обозначения
Благодарности
Обратная связь
Часть I. Общие сведения о USB
Глава 1. Спецификация USB
1.1. Что такое USB и зачем это надо
1.1.1. Общая архитектура USB
1.1.2. Физическая и логическая архитектура USB
1.1.3. Составляющие USB
1.1.4. Свойства USB-устройств
1.1.5. Принципы передачи данных
1.1.6. Механизм прерываний
1.1.7. Режимы передачи данных
1.1.8. Логические уровни обмена данными
1.1.8.1. Уровень клиентского ПО
1.1.8.2. Уровень системного драйвера USB
1.1.8.3. Уровень хост-контроллера интерфейса
1.1.8.4. Уровень шины периферийного USB-устройства
1.1.8.5. Уровень логического USB-устройства
1.1.8.6. Функциональный уровень USB-устройства
1.1.9. Передача данных по уровням
1.1.10. Типы передач данных
1.1.11. Кадры
1.1.12. Конечные точки
1.1.13. Каналы
1.1.14. Пакеты
1.1.14.1. Формат маркер-пакетов IN, OUT, SETUP и PING
1.1.14.2. Формат пакета SOF
1.1.14.3. Формат пакета данных
1.1.14.4. Формат пакета подтверждения
1.1.14.5. Формат пакета SPLIT
1.1.15. Контрольная сумма
1.1.15.1. Алгоритм вычисления CRC
1.1.15.2. Программное вычисление CRC
1.1.16. Транзакции
1.1.16.1. Типы транзакций
1.1.16.2. Подтверждение транзакций и управление потоком
1.1.16.3. Протоколы транзакций
1.2. Запросы к USB-устройствам
1.2.1. Конфигурационный пакет
1.2.2. Стандартные запросы к USB-устройствам
1.2.2.1. Получение состояния GET_STATUS
1.2.2.2. Сброс свойства CLEAR_FEATURE
1.2.2.3. Разрешение свойства SET_FEATURE
1.2.2.4. Задание адреса на шине SET_ADDRESS
1.2.2.5. Получение дескриптора GET_DESCRIPTOR
1.2.2.6. Передача дескриптора SET_DESCRIPTOR
1.2.2.7. Получение кода конфигурации GET_CONFIGURATION
1.2.2.8. Задание кода конфигурации SET_CONFIGURATION
1.2.2.9. Получение кода настройки интерфейса GET_INTERFACE
1.2.2.10. Задание кода настройки интерфейса SET_INTERFACE
1.2.2.11. Задание номера кадра синхронизации SYNC_FRAME
1.2.2.12. Обработка стандартных запросов
1.2.3. Дескриптор устройства
1.2.3.1. Дескриптор устройства
1.2.3.2. Уточняющий дескриптор устройства
1.2.3.3. Дескриптор конфигурации
1.2.3.4. Дескриптор интерфейса
1.2.3.5. Дескриптор конечной точки
1.2.3.6. Дескриптор строки
1.2.3.7. Специфические дескрипторы
1.2.3.8. Порядок получения дескрипторов
1.3. Система Plug and Play (PnP)
1.3.1. Конфигурирование USB-устройств
1.3.2. Нумерация USB-устройств
1.3.3. PnP-идентификаторы USB-устройств
1.3.4. Символьные имена устройств
1.4. Модель WDM
Глава 2. Программирование на языке C для микроконтроллера
2.1. Общие сведения о языке С для микроконтроллеров
2.2. Использование стандартных библиотек
2.3. Программирование для АТ89С5131
2.3.1. Файл инициализации
2.3.2. Структуры дескрипторов
2.3.3. Структура проекта
Глава 3. Инструменты
3.1. Программаторы
3.1.1. Программатор Flip
3.1.2. Программатор ER-Tronik
3.2. Инструменты создания драйверов
3.2.1. NuMega Driver Studio
3.2.2. Jungo WinDriver
3.2.3. Jungo KernelDriver
3.3. Средства Microsoft Visual Studio
3.3.1. Depends (Dependency Walker)
3.3.2. Error Lookup
3.3.3. GuidGen
3.4. Средства Microsoft DDK
3.4.1. DeviceTree
3.4.2. DevCon
3.4.2.1. Ключ classes
3.4.2.2. Ключ driverfiles
3.4.2.3. Ключ hwids
3.4.2.4. Ключ rescan
3.4.2.5. Ключ stack
3.4.2.6. Ключ status
3.4.3. Chklnf и Genlnf
3.5. Средства CompuWare Corporation
3.5.1. Monitor
3.5.2. SymLink
3.5.3. EzDriverlnstaller
3.5.4. WdmSniff
3.6. Средства Syslnternals
3.6.1. WinObj
3.7. Средства USB Forum
3.7.1. HID Descriptor Tool
3.8. USB Command Verifier
3.9. Средства HDD Software
3.10. Средства Sourceforge
3.11. Программа мониторинга Bus Hound
Глава 4. Принципы использования функций Win32 в.NET
4.1. Общие сведения
4.2. Импорт функций Win32
4.3. Структуры
4.3.1. Атрибут StructLayout
4.3.2. Атрибут MarshalAs
4.4. Прямой доступ к данным
4.5. Обработка сообщений Windows
4.6. Общие сведения о WMI
4.7. Интернет-ресурсы к этой главе
Часть II. Классы USB
Глава 5. Класс CDC
5.1. Методы преобразования интерфейсов USB/RS-232
5.2. Общие сведения об интерфейсе RS-232
5.2.1. Линии обмена
5.2.1.1. Передаваемые данные (BA/TxD/TD)
5.2.1.2. Принимаемые данные (BB/RxD/RD)
5.2.1.3. Запрос передачи (CA/RTS)
5.2.1.4. Готовность к передаче (CB/CTS)
5.2.1.5. Готовность DCE (CC/DSR)
5.2.1.6. Готовность DTE (CD/DTR)
5.2.1.7. Индикатор вызова (CE/RI)
5.2.1.8. Обнаружение несущей (CF/DCD)
5.2.1.9. Готовность к приему (CJ)
5.3. Спецификация CDC
5.3.1. Стандартные дескрипторы
5.3.2. Функциональные дескрипторы
5.3.2.1. Заголовочный функциональный дескриптор
5.3.2.2. Дескриптор режима команд
5.3.2.3. Дескриптор абстрактного устройства
5.3.2.4. Дескриптор группирования
5.3.3. Специальные запросы
5.3.3.1. Запрос SET_LINE_CODING
5.3.3.2. Запрос GET_LINE_CODING
5.3.3.3. Запрос SET_CONTROL_LINE_STATE
5.3.3.4. Запрос SEND_BREAK
5.3.4. Нотификации
5.3.4.1. Нотификация RING^DETECT
5.3.4.2. Нотификация SERIAL_STATE
5.4. Поддержка CDC в Windows
5.4.1. Обзор функций Windows для работы с последовательными портами
5.4.1.1. Основные операции с портом
5.4.1.2. Функции настройки порта
5.4.1.3. Специальная настройка порта
5.4.1.4. Получение состояния линий модема
5.4.1.5. Работа с CDC на платформе. NET
5.4.2. Соответствие функций Windows и USB-запросов
Глава 6. Класс HID
6.1. Спецификация HID-устройств
6.2. Порядок обмена данными с HID-устройством
6.3. Установка драйвера HID-устройства
6.4. Идентификация HID-устройства
6.4.1. Идентификация загрузочных устройств
6.4.2. Дескриптор конфигурации HID-устройства
6.4.3. HID-дескриптор
6.4.4. Дескриптор репорта
6.5. Структура дескриптора репорта
6.5.1. Элементы репорта
6.5.1.1. Элементы короткого типа
6.5.1.2. Элементы длинного типа
6.5.2. Типы элементов репорта
6.5.2.1. Основные элементы
6.5.2.2. Глобальные элементы
6.5.2.3. Локальные элементы
6.5.3. Примеры дескрипторов
6.6. Запросы к НID-устройству
6.6.1. Запрос GET_REPORT
6.6.2. Запрос SET_REPORT
6.6.3. Запрос GET_IDLE
6.6.4. Запрос SET_IDLE
6.6.5. Запрос GET_PROTOCOL
6.6.6. Запрос SET_PROTOCOL
6.7. Инструменты
6.8. Драйверы для HID-устройств в Windows
Глава 7. Другие классы USB
Часть III. Практика программирования USB
Глава 8. Создание USB-устройства на основе АТ89С5131
8.1. Общая информация об АТ89С5131
8.2. Структурная схема АТ89С5131
8.3. USB-регистры AT89C5131
8.3.1. Регистр USBCON
8.3.2. Регистр USBADDR
8.3.3. Регистр USBINT
8.3.4. Регистр USBIEN
8.3.5. Регистр UEPNUM
8.3.6. Регистр UEPCONX
8.3.7. Регистр UEPSTAX
8.3.8. Регистр UEPRST
8.3.9. Регистр UEPINT
8.3.10. Регистр UEPIEN
8.3.11. Регистр UEPDATX
8.3.12. Регистр UBYCTLX
8.3.13. Регистр UFNUML
8.3.14. Регистр UFNUMH
8.4. Схемотехника АТ89С5131
8.5. Базовый проект для АТ89С5131
8.5.1. Первая версия программы для АТ89С5131
8.5.2. Добавляем строковые дескрипторы
8.5.3. Добавление конечных точек
8.6. Загрузка программы
Глава 9. Реализация класса CDC
9.1. Реализация CDC
9.2. Дескрипторы устройства
9.2.1. Инициализация конечных точек
9.2.2. Обработка CDC-запросов
9.2.3. Конфигурирование RS-порта и CDC-линии
9.2.4. Прием и передача данных
9.3. Установка драйвера
9.4. Программирование обмена данными с CDC-устройством на языке Delphi
9.5. Программирование обмена с CDC-устройством на языке С#
9.5.1. Использование компонента MSCOMM
9.5.2. Использование функций Win32
9.6. Проблемы CDC
Глава 10. Реализация класса HID
10.1. Реализация HID на АТ89С5131
10.2. Передача нескольких байтов
10.3. Feature-репорты
10.4. Передача данных от хоста (SET_REPORT)
10.5. Установка HID-устройства
10.6. Обмен данными с HID-устройством
10.6.1. Получение имени HID-устройства
10.6.2. Получение атрибутов устройства и чтение репортов
10.6.3. Передача данных от хоста к HID-устройству
10.7. Примеры HID-устройств
10.7.1. Реализация устройства "мышь"
10.7.2. Реализация устройства "клавиатура"
10.8. Использование HID-протокола
10.8.1. Интерпретация данных
10.8.2. Коллекции
10.8.3. Массивы и кнопки
10.9. HID-устройство с несколькими репортами
Глава 11. Специальные функции Windows
11.1. Функции Setup API
11.1.1. Перечисление USB-устройств
11.1.2. Получение состояния USB-устройства
11.2. Перечисление USB-устройств с помощью WMI
11.3. Специальные функции Windows XP
11.3.1. HidD_GetInputReport - чтение HID-репортов
11.3.2. Получение данных Raw Input
11.4. Функции DirectX
11.5. Диалог добавления нового оборудования
11.6. Работа с символьными именами устройств
11.7. Безопасное извлечение флэш-дисков
11.8. Обнаружение добавления и удаления устройств
11.9. Интернет-ресурсы
Глава 12. Разработка драйвера
12.1. Основные процедуры драйвера WDM
12.1.1. Процедура DriverEntry
12.1.2. Процедура AddDevice
12.1.3. Процедура Unload
12.1.4. Рабочие процедуры драйвера
12.1.4.1. Заголовок пакета
12.1.4.2. Ячейки стека ввода/вывода
12.4.1.3. Рабочие процедуры драйвера
12.1.5. Обслуживание запросов IOCTL
12.2. Загрузка драйвера и обращение к процедурам драйвера
12.2.1. Процедура работы с драйвером
12.2.2. Регистрация драйвера
12.2.2.1. Регистрация с помощью SCM-менеджера
12.2.2.2. Параметры драйвера в реестре
12.2.3. Обращение к рабочим процедурам
12.2.4. Хранение драйвера внутри исполняемого файла
12.3. Создание драйвера с помощью Driver Studio
12.3.1. Несколько слов о библиотеке Driver Studio
12.3.1.1. Класс KDriver
12.3.1.2. Класс KDevice
12.3.1.3. Класс Klrp
12.3.1.4. Класс KRegistryKey
12.3.1.5. Класс KLowerDevice
12.3.1.6. Классы USB
12.3.2. Другие классы Driver Studio
12.3.3. Создание шаблона драйвера с помощью Driver Studio
12.3.3.1. Шаг 1. Задание имени и пути проекта
12.3.3.2. Шаг 2. Выбор архитектуры драйвера
12.3.3.3. Шаг 3. Выбор шины
12.3.3.4. Шаг 4. Задание набора конечных точек
12.3.3.5. Шаг 5. Задание имени класса и файла
12.3.3.6. Шаг 6. Выбор функций драйвера
12.3.3.7. Шаг 7. Выбор способа обработки запросов
12.3.3.8. Шаг 8. Создание сохраняемых параметров драйвера
12.3.3.9. Шаг 9. Свойства драйвера
12.3.3.10. Шаг 10. Задание кодов IOCTL
12.3.3.11. Шаг 11. Дополнительные настройки
12.3.4. Доработка шаблона драйвера
12.3.5. Базовые методы класса устройства
12.3.6. Реализация чтения данных
12.3.7. Установка драйвера
12.3.8. Программа чтения данных
12.3.9. Чтение данных с конечных точек других типов
12.3.10. "Чистый" драйвер USB-устройства
Часть IV. Справочник
Глава 13. Формат INF-файла
13.1. Структура INF-файла
13.1.1. Секция Version
13.1.2. Секция Manufacturer
13.1.3. Секция DestinationDirs
13.1.3.1. Ключ DefaultDescDir
13.1.3.2. Ключи file-list-section
13.1.3.3. Ключ dirid
13.1.3.4. Ключ subdir
13.1.4. Секция описания модели
13.1.5. Секция xxx. AddRegw xxx. DelReg
13.1.6. Секция xxx. LogConfig
13.1.7. Секция xxx. CopyFiles
13.1.8. Секция Strings
13.1.9. Связи секций
13.2. Создание и тестирование INF-файлов
13.3. Установка устройств с помощью INF-файла
13.4. Ветки реестра для USB
Глава 14. Базовые функции Windows
14.1. Функции CreateFile и CloseHandle: открытие и закрытие объекта
14.1.1. Дополнительные сведения
14.1.2. Возвращаемое значение
14.1.3. Пример вызова
14.2. Функция ReadFile: чтение данных
14.2.1. Дополнительные сведения
14.2.2. Возвращаемое значение
14.2.3. Пример вызова
14.3. Функция Write File: передача данных
14.3.1. Дополнительные сведения
14.3.2. Возвращаемое значение
14.3.3. Пример вызова
14.4. Функция ReadFileEx. АРС-чтение данных
14.4.1. Возвращаемое значение
14.4.2. Дополнительные сведения
14.4.3. Пример вызова
14.5. Функция WriteFiieEx: АРС-передача данных
14.5.1. Возвращаемое значение
14.5.2. Пример вызова
14.6. Функция WaitForSingieObject ожидание сигнального состояния объекта
14.6.1. Возвращаемое значение
14.7. Функция WaitForMultipleObjects: ожидание сигнального состояния объектов
14.7.1. Возвращаемое значение
14.8. Функция GetOverlapped Result: результат асинхронной операции
14.8.1. Возвращаемое значение
14.9. Функция DeviceloControl: прямое управление драйвером
14.9.1. Возвращаемое значение
14.10. Функция Cancel/o: прерывание операции
14.10.1. Возвращаемое значение
14.11. Функция Query Dos Device, получение имени устройства по его DOS-имени
14.11.1. Возвращаемое значение
14.11.2. Пример вызова
14.12. Функция Define Dos Device: операции с DOS-именем устройства
14.12.1. Возвращаемое значение
14.12.2. Пример вызова
Глава 15. Структуры и функции Windows для последовательных портов
15.1. Структура настроек порта COMMCONFIG
15.2. Структура свойств порта COMMPROP
15.3. Структура тайм-аутов COMMTIMEOUTS
15.4. Структура статуса порта COMSTAT
15.5. Структура DCB
15.6. Функция BuildCommDCB: создание структуры DCB из строки
15.6.1. Дополнительные сведения
15.6.2. Возвращаемое значение
15.6.3. Пример вызова
15.7. Функция BuildCommDCBAndTimeouts: создание структуры DCB и тайм-аутов из строки
15.8. Функции SetCommBreak и ClearCommBreak: управление выводом данных
15.8.1. Возвращаемое значение
15.9. Функция ClearCommError: получение и сброс ошибок порта
15.9.1. Возвращаемое значение
15.10. Функция EscapeCommFunction: управление портом
15.10.1. Возвращаемое значение
15.11. Функции GetCommMask и SetCommMask: маска вызова событий
15.11.1. Возвращаемое значение
15.12. Функция WaitCommEvent ожидание события СОМ-порта
15.12.1. Возвращаемое значение
15.12.2. Дополнительные сведения
15.12.3. Пример вызова
15.13. Функции GetCommConfig и SetCommConfig: конфигурирование параметров порта
15.13.1. Возвращаемое значение
15.13.2. Пример вызова
15.14. Функция CommConfigDialog: диалог конфигурирования порта
15.14.1. Возвращаемое значение
15.14.2. Дополнительные сведения
15.14.3. Пример вызова
15.15. Функция GetCommProperties: прочитать свойства порта
15.15.1. Возвращаемое значение
15.15.2. Пример вызова
15.16. Функции GetCommState и SetCommState: состояние порта
15.16.1. Возвращаемое значение
15.16.2. Пример вызова
15.17. Функции GetCommTimeouts и SetComniTimeouts: тайм-ауты порта
15.17.1. Возвращаемое значение
15.17.2. Пример вызова
15.18. Функция PurgeComm: сброс буферов порта
15.18.1. Возвращаемое значение
15.18.2. Пример вызова
15.19. Функция SetupComm: конфигурирование размеров буферов
15.19.1. Возвращаемое значение
15.20. Функции GetDefaultCommConfig и SetDefaitltCommConfig: настройки порта по умолчанию
15.20.1. Возвращаемое значение
15.21. Функция TransmitCommChar. передача специальных символов
15.21.1. Возвращаемое значение
15.22. Функция GetCommModemStatus: статус модема
15.22.1. Возвращаемое значение
15.22.2. Пример вызова
15.23. Функция EnumPorts: перечисление портов
15.23.1. Дополнительные сведения
15.23.2. Возвращаемое значение
15.23.3. Пример вызова
Глава 16. Структуры и функции Windows Setup API
16.1. Функция Setup DiGetCiassDevs: перечисление устройств
16.1.1. Возвращаемое значение
16.2. Функция SetupDiDestroyDevicelnfoList освобождение блока описания устройства
16.2.1. Возвращаемое значение
16.3. Функция SetupDiEnumDevicelnterfaces: информация об устройстве
16.3.1. Возвращаемое значение
16.4. Функция SetupDiGetDevicelnterfaceDetaii: детальная информация об устройстве
16.5. Функция SetupDiEnumDevicelnfo: информация об устройстве
16.6. Функция SetupDiGetDeviceRegistryProperty: получение Plug and Play свойств устройства
16.7. Функция CM_Get_DevNode_Status: статус устройства
16.8. Функция CM_Request_Device_Eject безопасное извлечение устройства
Глава 17. Структуры и функции Windows HID API
17.1. Функция HidD_Hello: проверка библиотеки
17.2. Функция HidD_JetHidGuid: получение GUID
17.3. Функция HidD_GetPreparsedData: создание описателя устройства
17.4. Функция HidD_EreePreparsedData: освобождение описателя устройства
17.5. Функция HidD_Get Feature: получение Feature-репорта
17.6. Функция HidD_SetFeature: передача Feature-репорта
17.7. Функция HidD_GetNumlnputBuffers: получение числа буферов
17.8. Функция HidD_SetNumlnputBuffers: установка числа буферов
17.9. Функция HidD_GetAttributes: получение атрибутов устройства
17.10. Функция HidD_GetManufacturerString. получение строки производителя
17.11. Функция HidD_GetProductString получение строки продукта
17.12. Функция HidD_GetSerialNumberString. получение строки серийного номера
17.13. Функция HidD_GetIndexedString. получение строки по индексу
17.14. Функция HidD_Jetlnput Report получение Input-репорта
17.15. Функция HidD_SetOutputReport. передача Output-репорта
17.16. Функция HidP_GetCaps: получение свойств устройства
17.17. Функция HidP_MaxDataListLength: получение размеров репортов
17.18. Функция HidD_FIushQueue: сброс буферов
17.19. Функция HidP_GetLinkColiectionNodes: дерево коллекций
17.20. Функции HidP_GetScaledUsageValue u HidP_SetScaledUsage Value: получение и задание преобразованных значений
17.21. Функция HidF_MaxUsageListLength: размер буфера для кодов клавиш
17.22. Функция HidP_UsageListDifference: различие между массивами
Приложения
Приложение 1. Дополнительные функции
Приложение 2. Компиляция примеров в других версиях Delphi
Приложение 3. Таблица идентификаторов языков (LangID)
Приложение 4. Таблица кодов производителей (Vendor ID, Device ID)
Приложение 5. Как создать ярлык Device Manager
Приложение 6. Часто задаваемые вопросы
Приложение 7. Описание компакт-диска
Литература
Предметный указатель

Шина USB (Universal Serial Bus – универсальная последовательная шина) появилась 15 января 1996 года при утверждении первого варианта стандарта фирмами – Intel, DEC, IBM, NEC, Northen Telecom и Compaq.

Основная цель стандарта, поставленная перед его разработчиками – создать возможность пользователям работать в режиме Plug&Play с периферийными устройствами. Это означает, что должно быть предусмотрено подключение устройства к работающему компьютеру, автоматическое распознавание его немедленно после подключения и последующей установки соответствующих драйверов. Кроме этого, желательно питание маломощных устройств подавать с самой шины. Скорость шины должна быть достаточной для подавляющего большинства периферийных устройств. Контроллер USB должен занимать только одно прерывание независимо от количества подключенных к шине устройств, то есть решить проблему нехватки ресурсов на внутренних шинах IBM PC совместимого компьютера.

Практически все поставленные задачи были решены в стандарте на USB и весной 1997 года стали появляться компьютеры, оборудованные разъемами для подключения USB устройств. Сейчас USB стала настолько активно внедряться производителями компьютерной периферии, что, например, в компьютере iMAC фирмы Apple Computers присутствует только USB в качестве внешней шины.

Возможности USB 1.0 следующие:

1. высокая скорость обмена данными (full-speed) – 12 Мбит /с;

2. максимальная длина кабеля для высокой скорости обмена – 5 метров;

3. низкая скорость обмена данными (low-speed) – 1,5 Мбит /с;

4. максимальная длина кабеля для низкой скорости обмена – 3 метра;

5. максимальное количество подключенных устройств – 127;

6. возможное одновременное подключение устройств с различными скоростями обмена;

8. максимальный ток потребления на одно устройство – 500 мА.

Поэтому целесообразно подключать к USB 1.0 практически любые периферийные устройства, кроме цифровых видеокамер и высокоскоростных жестких дисков. Особенно удобен этот интерфейс для подключения часто подключаемых/отключаемых приборов, таких как цифровые фотокамеры.
Возможность использования только двух скоростей обмена данными ограничивает применяемость шины, но существенно уменьшает количество линий интерфейса и упрощает аппаратную реализацию.
Питание непосредственно от USB возможно только для устройств с малым потреблением, таких как клавиатуры, мыши, джойстики и т.п.

Сигналы USB передаются по 4-х проводному кабелю, схематично показанному на рисунке ниже:

Рисунок 2.6.1 – Сигнальные провода USB

Здесь GND – цепь общего провода для питания периферийных устройств, Vbus - +5 В также для цепей питания. Шина D+ предназначена для передачи данных по шине, а шина D- для приема данных.
Кабель для поддержки полной скорости шины (full-speed) выполняется как витая пара, защищается экраном и может также использоваться для работы в режиме минимальной скорости (low-speed). Кабель для работы только на минимальной скорости (например, для подключения мыши) может быть любым и неэкранированным.
Разъемы, используемые для подключения периферийных устройств, делятся на серии: разъемы серии «A» (вилка и розетка) предназначены только для подключения к источнику, например, компьютеру, разъемы серии «B» (вилка и розетка) только для подключения к периферийному устройству.

USB разъемы имеют следующую нумерацию контактов, показанную в таблице 2.6.1.

Таблица 2.6.1 – Назначение и маркировка контактов USB

В 1999 году тот же консорциум компьютерных компаний, который инициировал разработку первой версии стандарта на шину USB, начал активно разрабатывать версию 2.0 USB, которая отличается введением дополнительного высокоскоростного (Hi-speed) режима. Полоса пропускания шины увеличена в 40 раз, до 480 Мбит/с, что сделало возможным передачу видеоданных по USB.
Совместимость всей ранее выпущенной периферии и высокоскоростных кабелей полностью сохраняется. Контроллер стандарта 2.0 уже интегрирован в набор системной логики программируемых устройств (например, материнская плата персонального компьютера).

В 2008 году компаниями Intel, Microsoft, Hewlett-Packard, Texas Instruments, NEC и NXP Semiconductors создана спецификация стандарта USB 3.0. В спецификации USB 3.0 разъёмы и кабели обновлённого стандарта физически и функционально совместимы с USB 2.0, однако в дополнение к четырем линиям связи, добавлены ещё четыре. Тем не менее, новые контакты в разъёмах USB 3.0 расположены отдельно от старых на другом контактном ряду. Спецификация USB 3.0 повышает максимальную скорость передачи информации до 5 Гбит/с - что на порядок больше 480 Мбит/с, которые может обеспечить USB 2.0. Кроме того, увеличена максимальная сила тока с 500 мА до 900 мА на одно устройство, что позволяет питать некоторые устройства, требующие ранее отдельного блока питания.

Предположим, разработано устройство USB, с которым необходимо работать с помощью компьютера. Этого можно достигнуть минимум двумя способами:

1. разработка полнофункционального драйвера операционной системы;

2. использования интерфейса специального класса USB – устройств, называемых HID (Human Interface Device) устройствами.

Первый способ универсален: владея достаточными познаниями в области написания драйверов, можно запрограммировать работу с любым устройством на любой скорости, поддерживаемой USB. Но это достаточно непростая задача.

Второй способ заключается в следующем. Существует поддерживаемый современными операционными системами интерфейс для устройств взаимодействия компьютера и человека или HID-устройств, таких как:

1. клавиатуры, мыши, джойстики;

2. различные датчики и считыватели;

3. игровые рулевое управление и педали;

4. кнопки, переключатели, регуляторы.

Любое такое устройство, если оно выполняет требования к HID-устройствам, будет автоматически распознано системой и не потребует написания специальных драйверов. Кроме того, их программирование, как правило, намного проще написания специализированного драйвера устройства. К сожалению, способ имеет существенный недостаток: скорость обмена информации с HID-устройством сильно ограничена и составляет максимум 64 кБ/с.

Принципиально на основе HID-технологии можно организовать взаимодействие с любым устройством, даже если оно не является в строгом смысле интерфейсным устройством человека и компьютера. Это позволяет отказаться от трудоемкой разработки уникального драйвера устройства и сэкономить время на разработку нового USB-устройства. На стороне хоста обменом с устройством будет руководить стандартный HID-драйвер, включенный в поставку операционной системы. Нужно лишь выполнить со стороны устройства минимальные требования USB-HID протокола.

Стоит отметить что, многие USB-приборы, с первого взгляда не попадающие под определение устройств взаимодействия с человеком, логичнее все же реализовать как HID-устройства. Такое явление часто встречается в области производственного оборудования, которая последнее время переживает массовое внедрение USB-технологий. К примеру, рассмотрим лабораторный источник питания с возможностью задания параметров его выходных сигналов с компьютера с помощью USB-интерфейса. Непосредственно источник питания без сомнений не является средством взаимодействия с человеком. Однако, в данном случае функции, реализуемые посредством USB-подключения, дублируют клавиатуру, регуляторы и индикаторы, установленные на самом приборе. А эти органы управления как раз попадают под определение HID. Соответственно блок питания с этими USB-функциями логичнее всего организовать как HID-устройство.

В рассмотренном примере для нормальной работы достаточно будет небольшой скорости передачи данных, в других же случаях приборы могут быть весьма требовательны к скорости обмена. Низкая скорость передачи является главным ограничением HID-варианта построения устройства, что в сравнении с 12 Мбит/сек полной скорости USB 1.0-шины выглядит большим минусом HID-технологии в вопросе выбора конкретной USB-реализации. Однако для многих задач коммуникации указанной скорости вполне хватает и HID-архитектура как специализированный инструмент занимает достойное место среди способов организации обмена данными.

HID-устройства бывают двух типов: участвующие (загрузочные) и неучаствующие в начальной загрузке компьютера. Наиболее ярким примером загрузочного USB-HID устройства является клавиатура, работа которой начинается со стартом компьютера.

При разработке HID-устройства необходимо обеспечить следующие требования, налагаемые спецификацией:

1. полноскоростное HID-устройство может передавать 64000 байт каждую секунду или по 64 байта каждые 1 мс; низкоскоростное HID-устройство имеет возможность передать вплоть до 800 байт в секунду или по 8 байт каждые 10 мс.

2. HID-устройство может назначить частоту своего опроса для определения того, есть ли у него свежие данные для передачи.

3. Обмен данными с HID-устройством осуществляется посредством специальной структуры, называемой репортом (Report). Каждый определенный репорт может содержать до 65535 байт данных. Структура репорта имеет весьма гибкую организацию, позволяющую описать любой формат передачи данных. Для того чтобы конкретный формат репорта стал известен хосту микроконтроллер должен содержать специальное описание – дескриптор репорта.

Реализуется USB взаимодействие непосредственно на микроконтроллере несколькими способами:

1. использованием контроллера с аппаратной поддержкой, например AT90USB*, фирмы atmega;

2. использованием программной эмуляции usb-интерфейса на любом микроконтроллере.

Для программной реализации в настоящее время существует ряд готовых решения под различные семейства микроконтроллеров. Для AVR микроконтроллеров, например, Atmega8 возможно использовать следующие свободные библиотеки на языке Си:

Обе достаточно простые в использовании, обеспечивают полную эмуляция USB 1.1 low-speed устройств за исключением обработки ошибок связи и электрических характеристик и запускаются практически на всех AVR контроллерах с минимум 2 килобайтами flash-памяти, 128 байтами RAM и частотой от 12 до 20 МГц.

Для написания приложений с поддержкой Windows USB HID устройств требуются заголовочные файлы hid*, входящие в состав WDK (Windows Driver Kit), или можно использовать свободно-распространяемую библиотеку hidlibrary или другую аналогичную.

Таким образом, в общем случае программирование USB достаточно сложная задача, требующая специального микроконтроллера с аппаратной поддержкой и написания драйвера операционной системы. Однако в практике при разработке устройств можно использовать значительно более просто интерфейс HID – устройств, поддержка которого реализована на уровне стандартного драйвера системы, а программирование упрощается использованием существующих библиотек функций.

Контрольные вопросы

  1. В чем отличие провода D- и GND в USB? Почему нельзя использовать один общий провод для питания и сигнала?
  2. Сколько режимов скорости работы USB существует на сегодняшний день (включая версию 3.0)?
  3. Что такое HID-устройство? Почему для их работы в современных ОС не требуется написание драйверов?
  4. Можно ли реалировать USB устройства с помощью микропроцессора, неимеющего встроенной поддержки интерфейса?
  5. Какие основные отличия USB 3.0 от предыдущих версий?

Рисунок 1

Интерфейс USB приобретает все большую популярность как интерфейс связи периферийных устройств с ПК и современные компьютеры зачастую не имеют привычного интерфейса RS-232. Популярность USB обусловлена многими причинами, вот основные из них:

  • высокая скорость обмена, высокая помехозащищенность
  • управление потоком данных, контроль целостности и исправление ошибок
  • возможность разветвления через хабы и подключения большого количества устройств.
  • возможность получения питания от шины
  • универсальность шины - возможность подключения разноплановых устройств (клавиатура, принтер, модем)
  • автоматическая идентификация и конфигурирование системы, Plug and Play

Однако существуют (зачастую необоснованные) факторы, сдерживающие массовое использование USB разработчиками микроконтроллерных приборов:

  • необходимость программирования драйверов для Windows
  • сравнительно малая распространенность микроконтроллеров со встроенным интерфейсом USB
  • Урок 2. Создание USB 2.0 совместимого HID-устройства типа джойстик.

Этот цикл статей призван показать, что преодолеть эти трудности довольно легко и каждый может провести "апгрейд" своего устройства с привычного RS-232 на USB или создать новое устройство с USB интерфейсом.

В качестве микроконтроллера в примерах будет рассматриваться микроконтроллер производства компании Microchip PIC18F4550 с интерфейсом USB 2.0 (поддерживает Low Speed и Full Speed).

Урок 1. USB без программирования Windows, виртуальный COM порт

Одна из задач, возникающих при разработке USB устройств, это переход с интерфейса RS-232 на USB, при этом, если производится модификация "старого" прибора или устройство должно быть совместимо с существующими протоколами и программным обеспечением ПК, то желательно избавиться от любой модификации программного обеспечения на компьютере. Одним из решений данной задачи является использование интерфейса USB в качестве виртуального COM-порта. Применение данного метода исключает необходимость модификации ПО компьютера, т.к. USB соединение видится персональным компьютером как дополнительный COM-порт. Другое важное преимущество заключается в том, что используются стандартные драйвера Windows и не требуется создание какого-либо своего драйвера.

Спецификация USB описывает класс коммуникационных устройств (Communication Device Class - CDC), который определяет множество режимов соединений для телекоммуникационных (модемы, терминалы, телефоны) и сетевых устройств (Ethernet адаптеры и хабы, ADSL модемы), включая эмуляцию последовательного порта.

Возьмем в качестве примера устройство, которое через RS-232 передает данные о напряжении с потенциометра и температуре с цифрового датчика TC77, а так же принимает команды для включения/выключения двух светодиодов (данный пример для простоты реализуем на плате PICDEM™ FS USB DEMONSTRATION BOARD, но можно собрать и более простую схему - см.ниже).

Отладочная плата PICDEM FS-USB предназначена для разработок и демонстрации устройств на микроконтроллере PIC18F4550 с шиной USB2.0. На плате установлен контроллер PIC18F4550 в корпусе TQFP44, имеющий следующие особенности:

  • Максимальная частота работы - 48 МГц (12 MIPS);
  • 32 Кб Flash памяти программ (технология Enhanced Flash);
  • 2 Кб памяти данных (из них 1 Кб двухпортового ОЗУ);
  • 256 байт памяти данных EEPROM;
  • Интерфейс FS USB2.0 с поддержкой скорости работы 12 Мбит/с, со встроенным приемопередатчиком и стабилизатором напряжения.

На плате установлены:

  • Кварц 20 МГц;
  • Интерфейс RS-232 для демонстрации возможности перехода с USART на USB;
  • Разъем для внутрисхемного программирования и отладки
  • Стабилизатор питающего напряжения с возможностью переключения на питание от шины USB;
  • Разъем расширения PICtail™;
  • Температурный датчик TC77, подключенный по I2C;
  • Переменный резистор, подключенный ко входу АЦП;
  • Светодиоды, кнопки.

Для данного устройства есть программа для ПК для управления устройством и индикации значений напряжения и температуры. Итак, мы можем подключить устройство к RS-232, выбрать доступный в системе COM-порт и установить скорость обмена с нашим устройством, число бит данных, количество стоповых бит, а так же параметры битов четности и управления потоком в соответствии с программой микроконтроллера (для этого мы должны знать параметры инициализации нашего контроллера)


Рис. 2

Приступим к подключению нашего устройства к USB.

Компания Microchip Technology Inc. Предлагает готовый пример применения AN956, в котором реализована поддержка USB CDC для микроконтроллера PIC18F2550, PIC18F2455, PIC18F4455, PIC18F4550. Программа построена по модульному принципу, что позволяет легкую модернизацию и интегрированию в готовые проекты.

После начальной инициализации контроллера программа может общаться с ПК через интерфейс USB посредством нескольких готовых функций:

Модифицируем нашу программу для передачи и приема данных через USB.

Фрагмент программы подготовки и передачи данных:

Прием данных:

if(getsUSBUSART(input_buffer,1)) { switch (input_buffer) { case "1" : mLED_3_On(); break; case "2" : mLED_3_Off(); break; case "3" : mLED_4_On(); break; case "4" : mLED_4_Off(); break; default: break; } }

После подключения устройства к USB система опознает новое устройство


Рис. 3

И устанавливает новое оборудование


Рис. 4

Выбираем установку с указанного места и указываем путь расположения файла mcpusb.inf из комплекта исходных кодов программы к AN956. После этого производится установка нового устройства в систему.


Рис. 5

Итак, новое устройство готово к работе. В системе появился новый виртуальный COM порт.


Рис. 6

Теперь в нашей программе мы можем выбрать появившийся виртуальный COM порт для общения с устройством …


Рис. 7

… и посмотреть что устройство действительно стало работать через появившийся в системе COM порт посредством USB соединения.

Следует заметить, что USB обеспечивает контроль и исправление данных, поэтому такие понятия как скорость потока, биты четности и контроля потока становятся абстрактными понятиями, и в нашем случае их можно выбирать любыми, единственный информационный параметр это номер виртуального COM порта.

Окно программы PICDEM CDC


Рис. 8

При использовании микроконтроллеров PIC18Fxx5x со встроенным модулем USB 2.0 виртуальный COM порт может обеспечить скорость передачи данных до 80Кбайт в секунду (640Кбит/сек), что существенно превышает возможную скорость передачи через RS-232, при этом, как мы видим, переделки ПО для компьютера не потребовалось!

Примеры программ, документация и схема, использованные в уроке 1.

  1. Программа PICDEM CDC + исходные коды для Delphi загрузить
  2. Компонент Delphi для работы с COM портом загрузить
  3. AN956 + оригинальные исходные коды
  4. Файл user_uart.c (все изменения оригинальной программы из AN956 производились только в этом файле. Для запуска примера к урок 1, необходимо скопировать этот файл в каталог C:\MCHPFSUSB\fw\Cdc\user\, заменить в проекте файл user.c на user_uart.c, скомпилировать проект и прошить микроконтроллер)
  5. Упрощенная схема USB устройства


Рис. 9

Примечание: в оригинальной схеме платы PICDEM FS USB используется автоматическое определение источника питания платы (внешний источник или USB). Поэтому при использовании упрощенной схемы необходимо закоментарить строку #define USE_USB_BUSSENSE_IO в файле usbcfg.h

Урок 2. Создание USB 2.0 совместимого HID-устройства типа джойстик

Наиболее распространенными USB устройствами являются устройства интерфейса с человеком (HID - Human Interface Devices). Типичными представителями этого класса являются USB- клавиатуры, мыши, джойстики, панели настройки мониторов, считыватели штрих-кодов, карт-ридеры и т.п. Преимуществами HID устройств является:

  • простота реализации;
  • компактный код;
  • поддержка Windows (не нужны дополнительные драйвера).

На сайте компании Microchip есть пример реализации HID манипулятора мышь. Рассмотрим реализацию простейшего игрового манипулятора на основе этого примера. Для этого проекта будем использовать демонстрационную плату PICDEM FS-USB (DM163025). Отладочная плата PICDEM FS-USB имеет один переменный резистор и 2 кнопки, поэтому разрабатываемый джойстик будет иметь минимум элементов управления (2 кнопки и, например, регулятор газа).

В первую очередь нам нужно переписать дескриптор устройства под создаваемый джойстик. Для упрощения задачи можно воспользоваться программой HID Descriptor Tool, которую можно скачать с сайта www.usb.org

В комплекте с программой предоставляются примеры конфигураций некоторых HID-устройств, которые можно корректировать под свою задачу или создавать собственное HID устройство.


Рис. 10

Итак, в нашем случае будут использоваться несколько типов данных - это симуляция органа управления - Simulation Controls, а конкретно это ручка (педаль) газа (Throttle) и кнопки управления (Button). Для того чтобы операционная система "знала" как обращаться с этими типами данных, необходимо описать максимальные и минимальные значения и размер данных. В нашем случае "газ" это одно 8-и битное значение (report_size = 8, report_count = 1), а состояние кнопок определяется как поле однобитных значений. В примере используется только 2 кнопки, но необходимо выровнять поле до байтовой величины (report_size = 1, report_count = 8). Итого микроконтроллер при запросе данных от компьютера должен передать 2 байта - уровень газа и состояние кнопок в соответствии с сформированным дескриптором устройства (подробное описание возможных дескрипторов см. в спецификации на устройства HID www.usb.org). Созданное описание дескриптора устройства можно сохранить в разных форматах, в том числе и как заголовочный файл.h

Дополнительно нужно скорректировать в описании HID Class-Specific Descriptor размер полученного дескриптора устройства и в дескрипторе конечной точки изменить размер данных, передаваемых через конечную точку (в нашем случае передаем 2 байта, поэтому размер HID_INT_IN_EP_SIZE=2).

Перечисленных изменений хватит для того чтобы Windows опознала подключенное устройство как джойстик. Теперь можем скорректировать строковые данные, чтобы устройство имело то название, какое мы хотим (например "PIC18F4550 Joystick"). Для того чтобы присвоить устройству имя на русском языке необходимо прописывать строковый дескриптор в кодировке UNICODE. На этом описание джойстика заканчивается и нужно подготовить данные для передачи в PC.

ReadPOT(); // запуск измерения напряжения потенциометра buffer = ADRESH; // обработка состояний кнопок if(sw2==0) buffer |= 0x01; else buffer &= ~0x01; if(sw3==0) buffer |= 0x02; else buffer &= ~0x02; // передача данных Emulate_Joystick();

После компиляции проекта и программирования микроконтроллера можно подключить устройство к USB-порту. Плата определяется как HID игровое устройство, инсталлируется в систему и готово к работе.


Рис. 11

Через панель управления в Windows мы можем открыть доступные игровые устройства, выбрать наш джойстик, откалибровать его и проверить функциональность.


Рис. 12

При изменении конфигурации устройства - добавлении органов управления или кнопок, необходимо не только изменить описание дескриптора устройства, но и передавать данные строго в соответствии с созданным дескриптором. Так изменив в описании дескриптора устройства USAGE_MAXIMUM (BUTTON 2) максимальное число кнопок с 2 на 8, получим джойстик на 8 кнопок.


Рис. 13

При усложнении дескриптора можем получить и более полную реализацию джойстика, при этом нужно не забыть изменять следующие параметры: размер дескриптора, размер конечной точки и необходимо оправлять столько информационных данных, сколько объявлено в дескрипторе.


Рис. 14

Примеры программ, документация и схема, использованные в уроке 2.

  1. Оригинальные исходные коды реализации HID-мыши.
  2. Исходные коды реализации HID-джойстика.

Урок 3. Составное USB устройство

Любое USB устройство может иметь несколько конфигураций и в каждой конфигурации несколько интерфейсов. Это свойство USB позволяет создаваемому устройству иметь возможность опознаваться компьютером как несколько USB устройств с разными интерфейсами. Мышка, например, может иметь встроенный карт-ридер и взаимодействовать с компьютером как два независимых устройства.

Структура дескриптора устройства:


Рис. 15

На основе стандартного примера мышки и созданного джойстика создадим составное USB устройство, которое будет определяться компьютером как два независимых HID устройства.

1. Создание дескриптора.

Изменим структуру дескриптора (файл usbdsc.h)

Устройство будет иметь 2 интерфейса, в каждом по одной конечной точке.

#define CFG01 rom struct \ { USB_CFG_DSC cd01; \ USB_INTF_DSC i00a00; \ USB_HID_DSC hid_i00a00; \ USB_EP_DSC ep01i_i00a00; \ USB_INTF_DSC i01a00; \ USB_HID_DSC hid_i01a00; \ USB_EP_DSC ep02i_i01a00; \ } cfg01
  1. В соответствии с измененной структурой нужно изменить дескриптор в файле usbdsc.c.
  2. В файле usbcfg.h определить идентификаторы интерфейсов, используемые конечные точки, размеры report дескрипторов.
  3. В файле hid.c нужно инициализировать дополнительные конечные точки (в функции HIDInitEP) и изменить функцию обработки HID-запросов (функция USBCheckHIDRequest).
  4. Каждое из устройств, мышка и джойстик, должны передавать данные каждый в свою конечную точку. Поэтому нам необходимо добавить функции передачи данных в конкретные конечные точки и проверки, что нужная конечная точка свободна (добавить функции аналогичные mHIDTxIsBusy и HIDTxReport в файле hid.c).

Тогда передача данных для мышки будет выглядеть как

После компиляции проекта, прошивки контроллера и подключению устройства к USB, компьютером будут обнаружено новое составное устройство и добавлены мышка и джойстик.


Рис. 16


Рис. 17

Исходные коды составного HID устройства.

Замечание. Не забывайте менять PID при создании нового устройства или удалять из системы предыдущее устройство с тем же самым PID.

Урок 4. Опыты с программатором PICkit2

Компания Microchip Technology Inc. выпускает недорогой программатор разработчика PICkit2, который в первую очередь используется для программирования Flash-контроллеров. Отличительной особенностью этого программатора является доступность полной документации и исходных кодов прошивки для микроконтроллера, и программы оболочки для компьютера. PICkit2 получает питание от USB, формирует регулируемые напряжения программирования и питания, а так же имеет 3 линии входа-выхода для подключения к программируемому устройству. Для возможности обновления прошивки программатора в PICkit2 реализована программа бутлоадер.


Рис. 18

CDC-устройство на основе PICkit2

Используя все эти особенности, на основе программатора PICkit2 возможно создание и отладка своего USB-устройства с возможностью в любой момент откатиться назад к его функциям программатора. С помощью бутлоадера, который прошит в программатор, в PICkit2 можно прошить другие программы, например, программу поддержки виртуального COM-порта. Для этого берем пример CDC, переименовываем проект и делаем следующее

  1. в файле main.c меняем адрес расположения прошивки (бутлоадер PICkit2 передает управление пользовательской программе на адрес 0х002000.
    #pragma code _RESET_INTERRUPT_VECTOR = 0x002000
  2. в файле io_cfg.h убираем все про порт D (можно задать мигание светодиода на PORTC0).

    Так как PICKIT2 всегда питается от USB, то задаем

    #define usb_bus_sense 1 // device is always plugged in #define self_power 0 // device is powered from USB

  3. в файле usbcfg.h ставим комментарии на 2 строки
    //#define USE_SELF_POWER_SENSE_IO //#define USE_USB_BUS_SENSE_IO
  4. В файле user.c выводим в USB нужные нам данные
  5. подключаем файл линкера pickit2.lkr

После этого можно откомпилировать проект и через оболочку PICkit2 загрузить новую прошивку.

После перепрограммирования PICkit2, компьютер определяет появление нового COM-порта, и через гипертерминал можем увидеть, что PICkit2 отсылает данные через виртуальный COM-порт.

Исходные коды данного примера доступны по ссылке.

На основе данного примера и используя внешние выводы программатора PICkit2 можно получать данные с внешних устройств и передавать в компьютер через USB. Таким образом, используя PICkit2 можно сделать вывод данных на COG ЖК-индикаторы, считыватели I2C, SPI и 1-wire устройств, например датчиков температуры и др. устройств.

Радио HID клавиатура на основе PICkit2


Рис. 19

Рассмотрим еще один пример "нецелевого" использования программатора PICkit2 - эмулятор клавиатуры с радиоинтерфейсом. Такое устройство может использоваться, например, для проведения презентаций - для перелистывания слайдов вдали от компьютера.

Для реализации такого устройства нам понадобятся:

  • PICkit2
  • демо-плата из комплекта PICkit2 (DV164120)
  • радиоприемник (rfRXD0420) и радиопередатчик (rfPIC12F675) из комплекта rfPICkit.

К демо-плате подключаем радиоприемник. Микроконтроллер на плате будет принимать данные с приемника, обрабатывать их и, при определении нажатия одной из двух кнопок на радиобрелке, выставлять уровень лог.1 на одном из 2-х выводов подключенных к PICkit2.

PICkit2 будет выполнять следующие функции:

  • при подключении к компьютеру через USB определяться как HID-клавиатура
  • формировать напряжение питания +5В для демо-платы с приемником
  • опрашивать 2 внешних вывода контроллера приемника и при наличии лог. 1 отсылать в компьютер коды нажатия кнопок PageUp или PageDown.

Два виртуальнык COM-порта (Эмуляция микросхемы FTDI2232) на базе PICKit2

Этот пример предназначен только для изучения работы USB. Изучите требование лицензии на драйвер FTDI перед использованием!

Пример показывает как на базе микроконтроллера с USB портом сделать 2 виртуальных COM-порта.Для начало нужно установить драйвера для микросхемы FTDI2232. Затем для загрузки в PICkit2 нужно в оболочке PICkit2 выбрать пункт обновления прошивки и указать на файл TestVCP2.hex из архива. После перепрограммирования PICkit2 у вас в системе появятся 2 независимых последовательных COM порта.

Пример взят с сайта http://forum.microchip.com/tm.aspx?m=261649

Для обратного восстановления PICkit2 как программатора нужно отключить PICkit2 от USB и при нажатой кнопке снова подключить кабель USB, после чего выбрать загрузку штатной прошивки программатора.

Все приведенные выше примеры основаны на MCHPFSUSB Framework v1.3. С появлением контроллеров PIC24 и PIC32 с USB OTG, компания Microchip выпустила новую версию стека - USB stack v. 2.х.

В новой версии USB stack v. 2.3, помимо стеков USB device, реализующего функциональность USB-клиента, USB Embedded host, реализующего функциональность хоста, также добывлен стек USB dual role, реализующий функции и хоста, и клиента; и USB OTG, поддерживающий протокол согласования роли хоста (HNP), протокол запроса сеанса (SRP), и полностью соответствующий спецификации USB OTG. В примерах применения реализовано:

  • Embedded Host
    • Printer Class host - поддержка ESC/POS, PostScript® и PCL5 принтеров
    • CDC Class host - поддержка устройств ACM (abstract control model)
    • HID Клавиатура
  • Device
    • HID bootloader - добавлена поддержка семейств PIC32MX460F512L и PIC18F14K50
    • HID клавиатура, мышка
    • MSD internal flash demo - использование внутренней flash для хранения файлов
    • MSD + HID composite example - пример составного устройства MSD и HID
    • CDC - эмуляция COM-порта
    • поддержка семейства PIC32MX460F512L для всех демонстрационных проектов ПК
    • примеры HID, MCHPUSB и WinUSB теперь поддерживают функцию Microsoft Plug-and-Play (PnP) для автоопределения.
  • Документация
    • полное описание всех API расположено в папке "\Microchip\Help"

Microchip бесплатно предоставляет драйвера наиболее востребованных USB-классов:

  1. Интерфейс пользователя (HID). Этот режим обмена используется практически во всех клавиатурах, "мышках" и прочих устройствах ввода/вывода
  2. Коммуникационное устройство (CDC). Этот режим наиболее простой для перехода с последовательного интерфейса RS-232 на USB. На компьютерах с WinXP/2K производиться создание и эмуляция виртуального COM-порта при подключении микроконтроллера. Программы, работающие с портами COM1.. 4 будут работать без изменений и с виртуальным портом, но с большей скоростью (порядка 1 Мбит/с)
  3. Устройства массового хранения (MSD). Это устройства, работающие как накопители информации - флешки, SD/MMC-карты, диски и прочее
  4. Устройства класса "принтер" (Printer Class). Этот режим создан для использования USB-принтеров, что позволяет конечному устройству на PIC-микроконтроллере с модулем USB выводить необходимую информацию непосредственно на USB-принтер
  5. Резидентный загрузчик Microchip. Простейший режим, который используется только для обновления по USB программного обеспечения микроконтроллера. Со стороны ПК устанавливается небольшая программа, аналог драйвера
  6. Собственный драйвер (Custom). Наиболее полное использование ресурсов USB2.0 для продвинутых пользователей: возможность выбора режимов работы шины (изохронный, по прерываниям, объемный, управления), высокая скорость передачи. Требует глубоких знаний работы шины и навыки разработки ПО под Windows

Бутлоадер с USB Flash Drive

Обновление прошивки с обычного флэш диска.

Для обновления прошивки микроконтроллера с модулем USB-OTG (PIC24 или PIC32) не обязательно использовать специальное программное обеспечение. Наличие Host-режима позволяет подключать к микроконтроллеру обычные USB-накопители данных (Flash Drive). На сайте Microchip опубликован пример (бета версия), позволяющий обновить программное обеспечение микроконтроллера из подключенного USB-диска.

Для запуска примера вам нужно загрузить прошивку бутлоадера в плату PIC32 USB Board или Explorer 16 (c установленным процессорным модулем PIM PIC32 USB и дочерней платой USB PICtail Plus Daughter Board). Если подать питание на плату при нажатой кнопке, то контроллер перейдет в режим обновления прошивки. Если теперь подключить Flash накопитель с записанным файлом обновления прошивки, то микроконтроллер считает этот файл и перепишет в свою память программ.

Отладочные платы и средства разработки для USB

Программатор-отладчик PICkit2 (номер для заказа PG164120)

Наличие бутлоадера позволяет заливать свое программное обеспечения для освоения навыков работы с USB


Рис. 20

Отладочная плата PICDEM FS-USB (номер для заказа DM163025)

Предназначена для разработок и демонстрации устройств на микроконтроллере PIC18F4550 с шиной USB2.0. На плате установлен контроллер PIC18F4550 в корпусе TQFP44.


Рис. 21

Low Pin Count USB Develpment Kit (номер для заказа DM164127)

Отладочная плата Low Pin Count USB Development Kit предоставляет легкий путь для оценки возможностей микроконтроллеров 20-и выводных USB микроконтроллеров Microchip PIC18F14K50 и PIC18F13K50. Комплект включает все необходимое для начала работы с USB контроллерами (программное обеспечение, исходные файлы примеров, документацию).


Рис. 22

PIC18F87J50 Full Speed USB PIC18F87J50 FS USB Demo Board (номер для заказа MA180021)

Плата PIC18F87J50 FS USB Demo Board служит для отладки Full Speed USB 2.0 микроконтроллеров семейства PIC18F87J50. Помимо автономной работы плата так же может использоваться как процессорный модуль для платы PIC18 Explorer Board.


Рис. 23

PIC24 Starter Kit (номер для заказа DM240011)

Комплект разработчика PIC24F Starter Kit содержит все необходимое для начала работы с высокопроизводительными контроллерами семейства PIC24F. Этот недорогой комплект содержит интегрированный внутрисхемный отладчик и программатор, контроллер PIC24F с интерфейсом USB (на плате могут быть реализованы функции Host и Device), трехцветный светодиод, емкостная сенсорная панель и графический OLED дисплей. Демонстрационная программа через графическое меню позволяет осуществлять запись данных на внешний USB Flash Drive, осуществлять настройку сенсорной панели и запускать графические задачи.


Рис. 24

PIC32 USB Board (номер для заказа DM320003)

Позволяет освоить модуль USB-OTG в контроллерах PIC32


Рис. 25

Отладочная плата "Explorer 16 Development Board" (номер для заказа DM240001)

Это дешевое средство отладки для ознакомления и начала работы с высокопроизводительными семействами 16-и разрядных микроконтроллеров PIC24 и контроллерами цифровой обработки сигналов dsPIC33F.


Рис. 26

Дочерняя плата "USB PICtali Plus " (номер для заказа AC164131)

Совместно с USB процессорными Plug-In модулями позволяет разрабатывать и отлаживать USB устройства Host, Device, USB-OTG.


Рис. 27

Илья Афанасьев ,
Компания

Начнем с минимума:
include 18f2455 -- библиотека для используемого МК
--
enable_digital_io () -- переключение всех входов на цифровой режим
--
alias Button is pin_B7 -- раз уж у нас подключена кнопка, объявим ее
pin_B7_direction = input -- кнопка у нас работает на вход
--
-- одна строчка - и у нас есть все необходимое для работы с USB CDC
include usb_serial -- бибилотека для работы с usb
--
usb_serial_init () -- --инициализируем USB CDC
forever loop -- основной цикл, выполняется постоянно
usb_serial_flush () -- обновление usb. Данная процедура выполняет все необходимые
-- действия для поддержания соединения с ПК
end loop

Скомпилировав данный код, записав полученный HEX файл в МК при помощи бутлоадера и запустив устройство можно будет наблюдать как в системе опрделится новое устройство: Виртуальный сom-порт.

Теперь, когда устройство уже работает, научим его общаться.

Для чтения принятого байта существует функция usb_serial_read(byte) :boolean. При наличии полученного байта она заносит его в указанную переменную и возвращает true , иначе возвращает false .

Для отправки байта существует процедура usb_serial_data . Она замаскирована под переменную, потому для отправки байта достаточно присвоить ей значение отправляемого байта.

Объявим переменную размером в байт до основного цикла, в основном цикле будем проверять наличие полученных байт, и при их наличии отправлять их обратно.

include 18f2455
--
enable_digital_io ()
--
alias Button is pin_B7
pin_B7_direction = input
--
--
include usb_serial
--
usb_serial_init ()
var byte ch -- объявляем переменную
forever loop -- основной цикл
usb_serial_flush ()
if (usb_serial_read (ch )) then -- если байт получен, он будет записан в ch
usb_serial_data = ch -- отправляем полученный байт обратно
end if
end loop

Компилируем, зажимаем кнопку, передергиваем питание, запуская бутлоадер, меняем прошивку, запускаем.
Устройство снова определилось в системе, теперь нам нужен софт, дабы протестировать работу устройства.

Пока у нас нет своего, используем готовый терминал: я использовал программу RealTerm.
Открываем порт с нужным номером и отправляем данные.


И нам в ответ приходит то, что мы отправили. Значит, все работает как надо.

Софт

Итак, наш микроконтроллер умеет принимать байты и тут же отправлять их обратно. Теперь напишем свой софт для общения с ним (я буду использовать Delphi).

Создаем новый проект, раскидываем по форме необходимые компоненты:
SpinEdit1 - для указания номера порта
Button1 - для установки соединения
Button2 - для разрыва соединения
SpinEdit2 - для ввода байта в десятичном виде
Button3 - для отправки байта
Memo1 - для вывода принятой информации.

Как уже было сказано выше, с com-портом нужно работать так же, как и с обычным текстовым файлом: используя функции CreateFile, WriteFile и ReadFile.

Дабы не вдаваться в подробности, возьмем готовую библиотеку для работы с com-портом: ComPort.

Вешаем на каждую кнопку необходимую задачу и получаем конечный код:

unit Unit1;

interface

Uses
Windows, Messages, SysUtils, Variants, Classes, Graphics , Controls, Forms,
Dialogs, StdCtrls, Spin,ComPort;

Type
TForm1 = class (TForm)
SpinEdit1: TSpinEdit;
Button1: TButton;
Button2: TButton;
SpinEdit2: TSpinEdit;
Button3: TButton;
Memo1: TMemo;
procedure OnRead(Sender: TObject; ReadBytes: array of Byte );
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure Button3Click(Sender: TObject);
private
{ Private declarations }
Port: TComPort;
public
{ Public declarations }
end;

var
Form1: TForm1;
num: integer;
implementation

Procedure TForm1.Button1Click(Sender: TObject);
begin
Port:= TComPort.Create(SpinEdit1.Value, br115200); //создаем соединение
Port.OnRead:= OnRead; //создаем поток чтения принятых данных
Button2.Enabled:= true ; //активируем кнопку закрытия соединения
end;

Procedure TForm1.Button2Click(Sender: TObject);
begin
Port.Free; //закрываем соединение
Button2.Enabled:= false ; //отключаем кнопку
end;

Procedure TForm1.Button3Click(Sender: TObject);
begin
if Button2.Enabled then Port.Write();
end;

Procedure TForm1.FormDestroy(Sender: TObject);
begin
if Button2.Enabled then
Port.Free;
end;

Procedure TForm1.OnRead(Sender: TObject; ReadBytes: array of Byte );
var
i:integer;
begin
for i:= Low(ReadBytes) to High(ReadBytes) do //проходим по массиву принятых байт
begin
Memo1.Text:= Memo1.Text + "." +InttoHex(ReadBytes[i],2); //добавляем его HEX значение в окно
inc(num); //считаем колв-о принятых байт
end;
if num > 10 then begin
Memo1.Lines.Add("" ); //переносим строку
num:= 0;
end;
end;

Запускаем, устанавливаем соединение, отправляем байты:

Вот и готов наш самый простой терминал для работы с самым простым usb-устройством.

Как видно, чтение и запись происходит динамическими массивами байт.

Обрабатывая получаемую информацию можно составить необходимый протокол обмена, подходящий для текущей задачи.

include 18f2455
--
enable_digital_io ()
--
alias Button is pin_B7
pin_B7_direction = input
--
--
include usb_serial
--
usb_serial_init ()
var byte ch
var byte i -- объявляем вторую переменную
forever loop -- основной цикл
usb_serial_flush ()
if (usb_serial_read (ch )) then -- если байт получен выполняем необходимые действия
case ch of -- перебираем номер байта
0 : usb_serial_data = 0xff
1 : usb_serial_data = Button -- отправка состояния кнопки
OTHERWISE block -- если получено что-то иное
for 16 using i loop -- отправляем 10 байт с данными
usb_serial_data = ch +i -- от ch до ch+15
end loop
end block
end case
end if
end loop

Дополнительные возможности

Если на этом остановиться, получится обычная статья с подробным описанием примера использования библиотеки, коих на просторах сети достаточно. Потому добавлю немного более углубленной информации.

Упрощение отправки данных

Отправлять информацию по одному байту - не всегда удобно. Очень часто может пригодиться библиотека print . Она содержит процедуры по отправке данных всевозможной длины всевозможными форматами: byte,hex,dec,bin,boolean что может упростить вывод данных в программе.
>include print
...
var dword data
print_dword_hex (usb_serial_data , data )

Название всех команд можно посмотреть в файле библиотеки.

Ожидание подключения к ПК

Если перед стартом основного цикла микроконтроллера необходимо предварительно установить соединение с ПК, то можно дописать перед ним строчки
while (usb_cdc_line_status () == 0x00 ) loop
end loop

Привязываем к устройству номер порта

Если оставить все как есть, система при каждом новом подключении будет выделять первый свободный номер порта. А это значит что за ним придется всегда следить.
Для того, что бы этого не происходило, необходимо устройству присвоить уникальное значение серийного номера до подключения библиотеки usb:
Номер может быть любой длины и содержать различные символы.
const byte USB_STRING3 =
{
24 , -- длина массива
0x03 , -- bDescriptorType
"0" , 0x00 ,
"1" , 0x00 ,
"2" , 0x00 ,
"3" , 0x00 ,
"4" , 0x00 ,
"5" , 0x00 ,
"6" , 0x00 ,
"7" , 0x00 ,
"8" , 0x00 ,
"9" , 0x00 ,
"X" , 0x00
}

Меняем имя устройства на свое

Поменять имя устройства, видимое в системе до установки драйверов можно объявив массив с именем, как и серийный номер, это необходимо сделать до подключения библиотеки USB.
const byte USB_STRING2 =
{
28 , --
0x03 , -- bDescriptorType
"D" , 0x00 ,
"e" , 0x00 ,
"m" , 0x00 ,
"o" , 0x00 ,
" " , 0x00 ,
"B" , 0x00 ,
"o" , 0x00 ,
"a" , 0x00 ,
"r" , 0x00 ,
"d" , 0x00 ,
" " , 0x00 ,
"=" , 0x00 ,
")" , 0x00
}

Но увы, после установки драйверов устройство поменяет имя на указанное в.inf файле, потому поменяем имя и там


DESCRIPTION=«Demo CDC»

Организуем автоподключение устройства

Увы, никаких прямых путей выполнить данную задачу нет, потому придется исхитриться.

Прежде всего необходимо присвоить своему устройству уникальное значение производителя и продукта, дабы легко определять его среди сотен других стандартных CDC-прошивок.
VID и PID выдаются за денюжку, потому пойдем по пуути китайцев: втихую возьмем себе заведомо свободные значения.

Прошивка:
В прошивке необходимо объявить две переменные до подключения библиотеки USB

const word USB_SERIAL_PRODUCT_ID = 0xFF10
const word USB_SERIAL_VENDOR_ID = 0xFF10

Вместо FF10 можно вставить любые два слова (2 байта). Конечный результат содержится в прилагаемом архиве.

Драйвера:
Так как драйвера не предназначены для нашей комбинации VID и PID, допишем наши значения в.inf файл вручную:


%DESCRIPTION%=DriverInstall, USB\VID_FF10&PID_FF10


%DESCRIPTION%=DriverInstall, USB\VID_FF10&PID_FF10

Софт:
Для отлова событий подключения\отключения устройства подключим библиотеку ComponentUSB. Не считаю нужным пояснять каждую строчку: все изменения можно увидеть в прилагаемом проекте.

Результат

На скриншоте сложно разглядеть, но кнопка отправки активна только в момент наличия подключенного устройства, при этом каждые 50мс программа подает запрос на получение состояния кнопки (что, впрочем, неправильно, потому как нажатие кнопки должно обрабатываться на МК).

Как видно, организовать обмен данными между МК и ПК через USB - не самое сложное занятие. Полученное соединение можно использовать не только для конечынх целей: оно так же подходит для отладки программы. Ведь отправить на компьютер результаты расчетов, текущие состояния регистров и переменных куда нагляднее, чем моргать парой светодиодов азбукой морзе.

И напоследок: советую заглянуть в исходный код лампы настроения. Там можно найти довольно-таки хороший вариант обработки принимаемых данных для организации удобного протокола обмена.

Настройка