Количественные показатели надежности. Интенсивность отказов - зависимость интенсивности отказов от времени (кривая жизни изделия) Определение интенсивности отказов

Среднее значение наработок изделий в партии до первого отказа называется средней наработкой до первого отказа. Этот термин применим как для ремонтируемых, так и для неремонтируемых изделий. Для неремонтируемых изделий вместо названного можно применять термин средняя наработка до отказа.

ГОСТом 13377 – 67 для неремонтируемых изделий введен еще один показатель надежности, называемый интенсивностью отказов.

Интенсивность отказов есть вероятность того, что неремонтируемое изделие, проработавшее безотказно до момента t, откажет в последующую единицу времени, если эта единица мала.

Интенсивность отказов изделия есть функция времени от его работы.

В предположении, что безотказность некоторого блока в электронной системе управления автомобиля характеризуется интенсивностью отказов, численно равной рассчитанной, причем эта интенсивность не меняется в течение всего срока его службы, необходимо определить наработку до отказа Т Б такого блока.

Подсистема управления включает в себя k последовательно соединенных электронных блоков (рис.2).

Рис.2 Подсистема управления с последовательно включенными блоками.

Эти блоки имеют одинаковую интенсивность отказов, численно равную рассчитанной. Требуется определить интенсивность отказов подсистемы λ П и среднюю наработку ее до отказа , построить зависимости вероятности безотказной работы одного блока Р Б (t) и подсистемы Р П (t) от наработки и определить вероятности безотказной работы блока Р Б (t) и подсистемы Р П (t) к наработке t= T П.

Интенсивность отказов λ(t) рассчитывается по формуле:

, (5)

Где - статистическая вероятность отказа устройства на интервале или иначе статистическая вероятность попадания на указанный интервал случайной величины Т.

Р(t) – рассчитанная на шаге 1 – вероятность безотказной работы устройства.

Заданное значение 10 3 ч - 6,5

Интервал =

λ(t) = 0,4 / 0,4*3*10 3 ч = 0,00033

Предположим, что интенсивность отказов не меняется в течение всего срока службы объекта, т.е. λ(t) = λ = const, то наработка до отказа распределена по экспоненциальному (показательному) закону.

В этом случае вероятность безотказной работы блока:

(6)

Р Б (t) = exp (-0.00033*6.5*10 3) = exp(-2.1666) = 0.1146

А средняя наработка блока до отказа находится как:

1/0,00033 = 3030,30 ч.

При последовательном соединении k блоков интенсивность отказов образуемой ими подсистемы:

(8)

Т.к.интенсивности отказов всех блоков одинаковы, то интенсивность отказов подсистемы:

λ П = 4*0,00033 = 0,00132 ч.,

а вероятность безотказной работы системы:

(10)

Р П (t) = exp (-0.00132*6.5*10 3) = exp (-8,58) = 0.000188

С учетом (7) и (8) средняя наработка подсистемы до отказа находится как:

(11)

1/0,00132 = 757,58 ч.

Вывод: по мере приближения к предельному состоянию – интенсивность отказов объектов возрастает.

    Расчет вероятности безотказной работы .

Задание: Для наработки t = требуется рассчитать вероятность безотказной работы Рс() системы (рис. 3), состоящей из двух подсистем, одна из которых является резервной.

Рис. 3 Схема системы с резервированием.

Расчет ведется в предположении, что отказы каждой из двух подсистем независимы.

Вероятности безотказной работы каждой системы одинаковы и равны Р П (). Тогда вероятность отказа одной подсистемы:

Q П () = 1 – 0,000188 = 0,99812

Вероятность отказа всей системы определяется из условия, что отказала и первая, и вторая подсистемы, т.е.:

0,99812 2 = 0,99962

Отсюда вероятность безотказной работы системы:

,

Р с () = 1 – 0,98 = 0,0037

Вывод: в данном задании была рассчитана вероятность безотказной работы системы при отказе первой и второй подсистемы. По сравнению с последова-тельной структурой вероятность безотказной работы системы меньше.

Различают три вида отказов:

· обусловленные скрытыми ошибками в конструкторско-технологической документации и производственными дефектами при изготовлении изделий;

· обусловленные старением и износом радио- и конструкционных элементов;

· обусловленные случайными факторами различной природы.

Для оценки надежности систем введены понятия «работоспособность» и «отказ».

Работоспособность и отказы. Работоспособность - это состояние изделия, при котором оно способно выполнять заданные функции с параметрами, установленными требованиями технической документации. Отказ – событие, приводящее к полной или частичной утрате работоспособности изделия. По характеру изменения параметров аппаратуры отказы подразделяют на внезапные и по­степенные.

Внезапные (катастрофические) отказы характеризуются скачкообразным изменением одного или нескольких параметров аппаратуры и возникают в результате внезапного изменения одного или нескольких параметров элементов, из которых построена РЭА (обрыв или короткое замыкание). Устранение внезапного отказа производят заменой отказавшего элемента исправным или его ремонтом.

Постепенные (параметрические) отказы характеризуются изменением одного или нескольких параметров аппаратуры с течением времени. Они возникают в результате постепенного изменения параметров элементов до тех пор, пока значение одного из параметров не выйдет за некоторые пределы, определяющие нормальную работу элементов. Это может быть последствием старения элементов, воздействия колебаний температуры, влажности, давления, механических воздействий, и т.п. Устранение постепенного отказа связано либо с заменой, ремонтом, регулировкой параметров отказавшего элемента, либо с компенсацией за счет изменения параметров других элементов.

По взаимосвязи между собой различают отказы независимые, не свя­занные с другими отказами, и зависимые. По повторяемости возникновения отказы бывают одноразовые (сбои) и перемежающиеся. Сбой - однократно возникающий самоустраняющийся отказ, перемежающийся - многократно возникающий сбой одного и того же характера.

По наличию внешних признаков различают отказы явные - имею­щие внешние признаки появления, и неявные (скрытые), для обна­ружения которых требуется провести определенные действия.

По причине возникновения отказы подразделяют на конструкцион­ные, производственные и эксплуатационные, вызванные нарушением уста­новленных норм и правил при конструировании, производстве и эксплуата­ции РЭА.

По характеру устранения отказы делятся на устойчивые и самоустра­няющиеся. Устойчивый отказ устраняется заменой отказавшего элемента (модуля), а самоустраняющийся исчезает сам, но может повториться. Само­устраняющийся отказ может проявиться в виде сбоя или в форме переме­жающегося отказа. Отказ типа сбоя особенно характерен для РЭА. Появление сбоев обусловливается внешними и внутренними факторами.

К внешним факторам относятся колебания напряжения питания, вибрации, температурные колебания. Специальными мерами (стабилизации питания, амортизация, термостатирование и др.) влияние этих факторов может быть значительно ослаблено. К внутренним факторам относятся флуктуационные колебания параметров элементов, несинхронность работы отдельных устройств, внутренние шумы и наводки.

7.2. количественные характеристики Надежности

Надежность, как сочетание свойств безотказности, ремонтоспособности, долговечности и сохраняемости, и сами эти качества количественно характеризуются различными функциями и числовыми параметрами. Правильный выбор количественных показателей надежности РЭА позволяет объективно сравнивать технические характеристики различных изделий как на этапе проектирования, так и на этапе эксплуатации (правильный выбор системы элементов, технические обоснования работы по эксплуатации и ремонту РЭА, объем необходимого запасного имущества и др.).

Возникновение отказов носит случайный харак­тер. Процесс возникновения отказов в РЭА описывается сложными вероятностными законами. В инженерной практике для оценки надежности РЭА вводят количественные характеристики, основанные на обработке экспериментальных данных.

Безотказность изделий характеризуется

Вероятностью безотказной работы P(t) (характеризует скорость снижения надежности во времени),

Частотой отказов F(t),

Интенсивностью отказов l(t),

Средней наработкой на отказ Т ср.

Можно также надежность РЭА оценивать вероятностью отказа q(t) = 1 - P(t).

Рассмотрим оценку надежности неремонтируемых систем. Приведенные характеристики верны и для ремонтируемых систем, если их рассматривать для случая до первого отказа.

Пусть на испытания поставлена партия, содержащая N(0) изделий. В процессе испытаний к моменту времени t вышли из строя n изделий. Осталось исправными:

N(t) = N(0) – n.

Отношение Q(t) = n/N(0) является оценкой вероятности выхода из строя изделия за время t. Чем больше число изделий, тем точнее оценка надежности результатов, строгое выражение для которой выглядит следующим образом:

Величина P(t), равная

P(t) = 1 – Q(t)

называется теоретической вероятностью безотказной работы и характеризует вероятность того, что к моменту t не произойдет отказа.

Вероятность безотказной работы P(t) представляет собой вероятность того, что в пределах указанного периода времени t, отказ объекта не возникнет. Этот показатель определяется отношение числа элементов объекта, безотказно проработавших до момента времени t к общему числу элементов объекта, работоспособных в начальный момент.

Вероятность безотказной работы изделия может быть определена и для произвольного интервала времени (t 1 ; t 2) с момента начала эксплуатации. В этом случае говорят об условной вероятности P(t 1 ; t 2) в период (t 1 ; t 2) при рабочем состоянии в момент времени t 1 . Условная вероятность P(t 1 ; t 2) определяется отношением:

P(t 1 ; t 2) = P(t 2)/ P(t 1),

где P(t 1) и P(t 2) - соответственно значения вероятностей в начале (t 1) и конце (t 2) наработки.

Частота отказов. Значение частоты отказов за время t в данном опыте определяется отношением f(t) = Q(t)/t = n/(N(0)*t). В качестве показателя надежности неремонтируемых систем чаще используют производную по времени от функции отказа Q(t), которая характеризует плотность распределения наработки изделия до отказа f(t):

f(t) = dQ(t)/dt = - dP(t)/dt.

Величина f(t)dt характеризует вероятность того, что система откажет в интервале времени (t; t+dt) при условии, что в момент времени t она находилась в рабочем состоянии.

Интенсивность отказов. Критерием, более полно определяющим надежность неремонтируемой РЭА и ее модулей, является интенсивность отказов l(t). Интенсивность отказов l(t) представляет условную вероятность возникновения отказа в системе в некоторый момент времени наработки при условии, что до этого момента отказов в системе не было. Величина l(t) определяется отношением

l (t) = f(t)/P(t) = (1/P(t)) dQ/dt.

Интенсивность отказов l (t) - это число отказов n(t) элементов объекта в единицу времени, отнесенное к среднему числу элементов N(t) объекта, работоспособных к моменту времени t:

l (t)=n(t)/(N(t)*t), где

t - заданный отрезок времени.

Например: 1000 элементов объекта работали 500 часов. За это время отказали 2 элемента. Отсюда, l(t)=n(t)/(N*t)=2/(1000*500)=4*10-6 1/ч, т.е. за 1 час может отказать 4-е элемента из миллиона.

Надежность объекта, как системы, характеризуется потоком отказов l, численно равное сумме интенсивности отказов отдельных устройств:

По формуле рассчитывается поток отказов и отдельных устройств объекта, состоящих, в свою очередь, из различных узлов и элементов, характеризующихся своей интенсивностью отказов. Формула справедлива для расчета потока отказов системы из n элементов в случае, когда отказ любого из них приводит к отказу всей системы в целом. Такое соединение элементов называется логически последовательным или основным. Кроме, того, существует логически параллельное соединение элементов, когда выход их строя одного из них не приводит к отказу системы в целом. Связь вероятности безотказной работы P(t) и потока отказов l определяется:

P(t)=exp(-lt), очевидно, что 0

Показатели интенсивности отказов комплектующих берутся на основании справочных данных [ 1, 6, 8 ]. Для примера в табл. 1 приведена интенсивность отказов l(t) некоторых элементов.

Наименование элемента Интенсивность отказов, *10 -5, 1/ч
Резисторы 0,0001…1,5
Конденсаторы 0,001…16,4
Трансформаторы 0,002…6,4
Катушки индуктивности 0,002…4,4
Реле 0,05…101
Диоды 0,012…50
Триоды 0,01…90
Коммутационные устройства 0,0003…2,8
Разъемы 0,001…9,1
Соединения пайкой 0,01…1
Провода, кабели 0,01…1
Электродвигатели 100…600

Отсюда следует, что величина l(t)dt характеризует условную вероятность того, что система откажет в интервале времени (t; t+dt) при условии, что в момент времени t она находилась в работоспособном состоянии. Этот показатель характеризует на­дежность РЭА в любой момент времени и для интервала Δt i может быть вычислен по формуле:

l = Δn i /(N ср Δt i),

где Δn i = N i - N i+1 - число отказов; N c p = (N i + N i +1)/2 - среднее число работоспособных изделий; N i , и N i+1 - количество работоспособных изделий в начале и конце промежутка времени Δt i .

Вероятность безотказной работы связана с величинами l(t) и f(t) следующими выражениями:

P(t) = exp(- l(t) dt), P(t) = exp(- f(t) dt)

Зная одну из характеристик надежности P(t), l(t) или f(t), можно найти две другие.

Если необходимо оценить условную вероятность, можно воспользоваться следующим выражением:

P(t 1 ; t 2) = exp(- l(t) dt).

Если РЭА содержит N последовательно соединенных однотипных эле­ментов, то l N (t) = Nl(t).

Средняя наработка на отказ Т ср и вероятность безотказной работы P(t) связаны зависимостью

Т ср = P(t) dt.

По статистическим данным

Т ср = Dn i t ср i , t ср i = (t i +t i +1)/2, m = t/Dt

где Δn i - количество отказавших изделий за интервал времени Δt ср i = (t i +1 -t i);

t i , t i +1 - соответственно время в начале и конце интервала испытаний (t 1 =0);

t - интервал времени, за который отказали все изделия; m - число времен­ных интервалов испытаний.

Средняя наработка до отказа To - это математическое ожидание наработки объекта до первого отказа:

To=1/l=1/(N*li), или, отсюда: l=1/To

Время безотказной работы равно обратной величине интенсивности отказов.

Например: технология элементов обеспечивает среднюю интенсивность отказов li=1*10 -5 1/ч. При использовании в объекта N=1*10 4 элементарных деталей суммарная интенсивность отказов lо= N*li=10 -1 1/ч. Тогда среднее время безотказной работы объекта To=1/lо=10 ч. Если выполнить объекта на основе 4-х больших интегральных схем (БИС), то среднее время безотказной работы объекта увеличится в N/4=2500 раз и составит 25000 ч. или 34 месяца или около 3 лет.

Пример. Из 20 неремонтируемых изделий в первый год эксплуатации отка­зало 10, во второй – 5, в третий - 5. Определить вероятность безотказной работы, частоту отка­зов, интенсивность отказов в первый год эксплуатации, а также среднюю наработку до первого отказа.

P(1)=(20-10)/20 = 0.5,

P(2)=(20-15)/20 = 0.25, P(1;2)= P(2)/ P(1) = 0.25/0.5 = 0.5,

P(3)=(20-20)/20 = 0, P(2;3)= P(3)/ P(2) = 0/0.25 = 0,

f(1)=10/(20·1) = 0.5 г -1 ,

f(2)=5/(20·1) = 0.25 г -1 ,

f(3)=5/(20·1) = 0.25 г -1 ,

l(1)=10/[(20*1] = 0.5 г -1 ,

l(2)=5/[(10*1] = 0.5 г -1 ,

l(3)=5/[(5*1] = 1 г -1 ,

Т ср = (10·0.5+5·1.5+5·2.5)/20 = 1.25 г.

Правильно понимать физическую природу и сущность отказов очень важно для обоснованной оценки надежности технических устройств. В практике эксплуатации различают три характерных типа отказов: приработочные, внезапные и отказы из-за износа. Они различаются физической природой, способами предупреждения и устранения и проявляются в различные периоды эксплуатации технических устройств.

Отказы удобно характеризовать «кривой жизни» изделия, которая иллюстрирует зависимость интенсивности происходящих в нем отказов l(t) от времени t. Такая идеализированная кривая для РЭА приведена на рисунке 7.2.1.


Рис. 7.2.1.

Она имеет три явно выраженных периода: приработки I, нормальной эксплуатации II, и износа III.

Приработочные отказы наблюдаются в первый период (0 - t 1) эксплуатации РЭА и возникают, когда часть элементов, входящих в состав РЭА, являются бракованными или имеют скрытые дефекты. Физический смысл приработочных отказов может быть объяснен тем, что электрические и механические нагрузки, приходящиеся на компоненты РЭА в приработочный период, превосходят их электрическую и механическую прочность. Поскольку продолжительность периода приработки РЭА определяется в основном интенсивностью отказов входящих в ее состав некачественных элементов, то продолжительность безотказной работы таких элементов обычно сравнительно низка, поэтому выявить и заменить их удается за сравнительно короткое время.

В зависимости от назначения РЭА период приработки может продолжаться от нескольких до сотен часов. Чем более ответственное изделие, тем больше продолжительность этого периода. Период приработки составляет обычно доли и единицы процента от времени нормальной эксплуатации РЭА во втором периоде.

Как видно из рисунка, участок «кривой жизни» РЭА, соответствующий периоду приработки I, представляет собой монотонно убывающую функцию l(t), крутизна которой и протяженность во времени тем меньше, чем совершеннее конструкция, выше качество ее изготовления и более тщательно соблюдены режимы приработки. Период приработки считают завершенным, когда интенсивность отказов РЭА приближается к минимально достижимой (для данной конструкции) величине l min в точке t 1 .

Приработочные отказы могут быть следствием конструкторских (например, неудачная компоновка), технологических (некачественное выполнение сборки) и эксплуатационных (нарушение режимов приработки) ошибок.

С учетом этого, при изготовлении изделий предприятиям рекомендуется проводить прогон изделий в течение нескольких десятков часов работы (до 2-5 суток) по специально разработанным методикам, в которых предусматривается работа при влиянии различных дестабилизирующих факторов (циклы непрерывной работы, циклы включений-выключений, изменения температуры, напряжения питания и пр.).

Период нормальной эксплуатации. Внезапные отказы наблюдаются во второй период (t 1 -t 2) эксплуатации РЭА. Они возникают неожиданно вследствие действия ряда случайных факторов, и предупредить их приближение практически не представляется возможным, тем более что к этому времени в РЭА остаются только полноценные компоненты. Однако и такие отказы все же подчиняются определенным закономерностям. В частности, частота их появления в течение достаточно большого промежутка времени одинакова в однотипных классах РЭА.

Физический смысл внезапных отказов может быть объяснен тем, что при быстром количественном изменении (обычно - резком увеличении) какого-либо параметра в компонентах РЭА происходят качественные изменения, в результате которых они утрачивают полностью или частично свои свойства, необходимые для нормального функционирования. К внезапным отказам РЭА относят, например, пробой диэлектриков, короткие замыкания проводников, неожиданные механические разрушения элементов конструкции и т. п.

Период нормальной эксплуатации РЭА характеризуется тем, что интенсивность ее отказов в интервале времени (t 1 -t 2) минимальна и имеет почти постоянное значение l min » const. Величина l min тем меньше, а интервал (t 1 – t 2) тем больше, чем совершеннее конструкция РЭА, выше качество ее изготовления и более тщательно соблюдены режимы эксплуатации. Период нормальной эксплуатации РЭА общетехнического назначения может продолжаться десятки тысяч часов. Он может даже превышать время морального старения аппаратуры.

Период износа. В конце строка службы аппаратуры количество отказов снова начинает нарастать. Они в большинстве случаев являются закономерным следствием постепенного износа и естественного старения используемых в аппаратуре материалов и элементов. Зависят они главным образом от продолжительности эксплуатации и «возраста» РЭА.

Средний срок службы компонента до износа - величина более определенная, чем время возникновения приработочных и внезапных отказов. Их появление можно предвидеть на основании опытных данных, полученных в результате испытаний конкретной аппаратуры.

Физический смысл отказов из-за износов может быть объяснен тем, что в результате постепенного и сравнительно медленного количественного изменения некоторого параметра компонента РЭА этот параметр выходит за пределы установленного допуска, полностью или частично утрачивает свои свойства, необходимые для нормального функционирования. При износе происходит частичное разрушение материалов, при старении - изменение их внутренних физико-химических свойств.

К отказам в результате износа относят потерю чувствительности, точности, механический износ деталей и др. Участок (t 2 -t 3) «кривой жизни» РЭА, соответствующий периоду износа, представляет собой монотонно возрастающую функцию, крутизна которой тем меньше (а протяженность во времени тем больше), чем более качественные материалы и комплектующие изделия использованы в аппаратуре. Эксплуатация аппаратуры прекращается, когда интенсивность отказов РЭА приблизится к максимально допустимой для данной конструкции.

Вероятность безотказной работы РЭА. Возникновение отказов в РЭА носит случайный характер. Следова­тельно, время безотказной работы есть случайная величина, для описания которой используют разные распределения: Вейбулла, экспоненциальный, Пуассона.

Отказы в РЭА, содержащей большое число однотипных неремонтируе­мых элементов, достаточно хорошо подчиняются распределению Вейбулла. Экспоненциальное распределение основано на предположении постоянной во времени интенсивности отказов и успешно может быть использовано при расчетах надежности аппаратуры одноразового применения, содержащей большое число неремонтируемых компонентов. При длительной работе РЭА для планирования ее ремонта важно знать не вероятность возникновения отказов, а их число за определенный период эксплуатации. В этом случае применяют распределение Пуассона, позво­ляющее подсчитать вероятность появления любого числа случайных собы­тий за некоторый период времени. Распреде­ление Пуассона применимо для оценки надежности ремонтируемой РЭА с простейшим потоком отказов.

Вероятность отсутствия отказа за время t составляет Р 0 = ехр(-t), а вероятность появления i отказов за то же время P i =  i t i exp(-t)/i!, где i = 0, 1, 2, ..., n - число отказов.

7.3. Структурная надежность аппаратуры

Структурная надежность любого радиоэлектронного аппарата, в том числе и РЭА, это его результирующая надежность при известной структурной схеме и известных значениях надежности всех элементов, составляющих структурную схему.

При этом под элементами понимаются как интегральные микросхемы, резисторы, конденсаторы и т. п., выполняющие определенные функции и включенные в общую электрическую схему РЭА, так и элементы вспомогательные, не входящие в структурную схему РЭА: соединения паяные, разъемные, элементы крепления и т. д.

Надежность указанных элементов достаточно подробно изложена в специальной литературе. При дальнейшем рассмотрении вопросов надежности РЭА будем исходить из того, что надежность элементов, составляющих структурную (электрическую) схему РЭА, задана однозначно.

Количественные характеристики структурной надежности РЭА.

Для их нахождения составляют структурную схему РЭА и указывают элементы устройства (блоки, узлы) и связи между ними.

Затем производят анализ схемы и выделяют элементы и связи, которые определяют выполнение основной функции данного устройства.

Из выделенных основных элементов и связей составляют функциональную (надежностную) схему, причем в ней выделяют элементы не по конструктивному, а по функциональному признаку с таким расчетом, чтобы каждому функциональному элементу обеспечивалась независимость, т. е. чтобы отказ одного функционального элемента не вызывал изменения вероятности появления отказа у другого соседнего функционального элемента. При составлении отдельных надежностных схем (устройств узлов, блоков) иногда следует объединять те конструктивные элементы, отказы которых взаимосвязаны, но не влияют на отказы других элементов.

Определение количественных показателей надежности РЭА с помощью структурных схем дает возможность решать вопросы выбора наиболее надежных функциональных элементов, узлов, блоков, из которых состоит РЭА, наиболее надежных конструкций, панелей, стоек, пультов, рационального порядка эксплуатации, профилактики и ремонта РЭА, состава и количества ЗИП.


Похожая информация.


Часть 1.

Введение
Развитие современной аппаратуры характеризуется значительным увеличением ее сложности. Усложнение обуславливает повышение гарантии своевременности и правильности решения задач.
Проблема надежности возникла в 50-х годах, когда начался процесс быстрого усложнения систем, и стали вводиться в действие новые объекты. В это время появились первые публикации, определяющие понятия и определения, относящиеся к надежности [ 1 ] и была создана методика оценки и расчета надежности устройств вероятностно-статистическими методами.
Исследование поведения аппаратуры (объекта) во время эксплуатации и оценка ее качества определяет его надежность. Термин "эксплуатация" происходит от французского слова "exploitation", что означает получение пользы или выгоды из чего-либо.
Надежность - свойство объекта выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах.
Для количественного выражения надежности объекта и для планирования эксплуатации используются специальные характеристики - показатели надежности. Они позволяют оценивать надежность объекта или его элементов в различных условиях и на разных этапах эксплуатации.
Более подробно с показателями надежности можно ознакомиться в ГОСТ 16503-70 - "Промышленные изделия. Номенклатура и характеристика основных показателей надежности.", ГОСТ 18322-73 - "Системы технического обслуживания и ремонта техники. Термины и определения.", ГОСТ 13377-75 - "Надежность в технике. Термины и определения".

Определения
Надежность - свойство [далее - (сво-во)] объекта [далее - (ОБ)] выполнять требуемые функции, сохраняя свои эксплуатационные показатели в течение заданного периода времени.
Надежность представляет собой комплексное сво-во, сочетающее в себе понятие работоспособности, безотказности, долговечности, ремонтопригодности и сохранности.
Работоспособность - представляет собой состояние ОБ, при котором он способен выполнять свои функции.
Безотказность - сво-во ОБ сохранять свою работоспособность в течение определенного времени. Событие, нарушающее работоспособность ОБ, называется отказом. Самоустраняющийся отказ называется сбоем.
Долговечность - сво-во ОБ сохранять свою работоспособность до предельного состояния, когда его эксплуатация становится невозможной по техническим, экономическим причинам, условиям техники безопасности или необходимости капитального ремонта.
Ремонтопригодность - определяет приспособляемость ОБ к предупреждению и обнаружению неисправностей и отказов и устранению их путем проведения ремонтов и технического обслуживания.
Сохраняемость - сво-во ОБ непрерывно поддерживать свою работоспособность в течение и после хранения и технического обслуживания.

Основные показатели надежности
Основными качественными показателями надежности является вероятность безотказной работы, интенсивность отказов и средняя наработка до отказа.
Вероятность безотказной работы P(t) представляет собой вероятность того, что в пределах указанного периода времени t , отказ ОБ не возникнет. Этот показатель определяется отношение числа элементов ОБ, безотказно проработавших до момента времени t к общему числу элементов ОБ, работоспособных в начальный момент.
Интенсивность отказов l (t) - это число отказов n(t) элементов ОБ в единицу времени, отнесенное к среднему числу элементов Nt ОБ, работоспособных к моменту времени D t :
l (t )= n (t )/(Nt * D t ) , где
D t - заданный отрезок времени.
Например : 1000 элементов ОБ работали 500 часов. За это время отказали 2 элемента. Отсюда, l (t )= n (t )/(Nt * D t )=2/(1000*500)=4*10 -6 1/ч, т.е. за 1 час может отказать 4-е элемента из миллиона.
Показатели интенсивности отказов комплектующих берутся на основании справочных данных [ 1, 6, 8 ]. Для примера в приведена интенсивность отказов l (t) некоторых элементов.

Наименование элемента

Интенсивность отказов, *10 -5, 1/ч

Резисторы

Конденсаторы

Трансформаторы

Катушки индуктивности

Коммутационные устройства

Соединения пайкой

Провода, кабели

Электродвигатели


Надежность ОБ, как системы, характеризуется потоком отказов L , численно равное сумме интенсивности отказов отдельных устройств:
L = ål i
По формуле рассчитывается поток отказов и отдельных устройств ОБ, состоящих, в свою очередь, из различных узлов и элементов, характеризующихся своей интенсивностью отказов. Формула справедлива для расчета потока отказов системы из n элементов в случае, когда отказ любого из них приводит к отказу всей системы в целом. Такое соединение элементов называется логически последовательным или основным. Кроме, того, существует логически параллельное соединение элементов, когда выход их строя одного из них не приводит к отказу системы в целом. Связь вероятности безотказной работы P(t) и потока отказов L определяется:
P (t )= exp (- D t ) , очевидно, что 0И 0< P (t )<1 и p (0)=1, а p (¥ )=0
Средняя наработка до отказа To - это математическое ожидание наработки ОБ до первого отказа:
To=1/ L =1/(ål i) , или , отсюда : L =1/To
Время безотказной работы равно обратной величине интенсивности отказов.
Например : технология элементов обеспечивает среднюю интенсивность отказов l i =1*10 -5 1/ч . При использовании в ОБ N=1*10 4 элементарных деталей суммарная интенсивность отказов l о= N * l i =10 -1 1/ч . Тогда среднее время безотказной работы ОБ To =1/ l о=10 ч. Если выполнить ОБ на основе 4-х больших интегральных схем (БИС), то среднее время безотказной работы ОБ увеличится в N/4=2500 раз и составит 25000 ч. или 34 месяца или около 3 лет.

Расчет надежности
Формулы позволяют выполнить расчет надежности ОБ, если известны исходные данные - состав ОБ, режим и условия его работы, интенсивности отказов его компонент (элементов). Однако при практических расчетах надежности есть трудности из-за отсутствия достоверных данных о интенсивности отказов для номенклатуры элементов, узлов и устройств ОБ. Выход из этого положения дает применение коэффициентного метода. Cущность коэффициентного метода состоит в том, что при расчете надежности ОБ используют не абсолютные значения интенсивности отказов l i , а коэффициент надежности ki , связывающий значения l i с интенсивностью отказов l b какого-либо базового элемента:
ki = l i / l b
Коэффициент надежности ki практически не зависит от условий эксплуатации и для данного элемента является константой, а различие условий эксплуатации ku учитывается соответствующими изменениями l b . В качестве базового элемента в теории и практике выбран резистор. Показатели надежности комплектующих берутся на основании справочных данных [ 1, 6, 8 ]. Для примера в приведен коэффициенты надежности ki некоторых элементов. В табл. 3 приведены коэффициенты условий эксплуатации ku работы для некоторых типов аппаратуры.
Влияние на надежность элементов основных дестабилизирующих факторов - электрических нагрузок, температуры окружающей среды - учитывается введением в расчет поправочных коэффициентов a . В табл. 4 приведены коэффициенты условий a работы для некоторых типов элементов. Учет влияния других факторов - запыленности, влажности и т.д. - выполняется коррекцией интенсивности отказов базового элемента с помощью поправочных коэффициентов.
Результирующий коэффициент надежности элементов ОБ с учетом поправочных коэффициентов:
ki"=a1*a2*a3*a4*ki*ku, где
ku - номинальное значение коэффициента условий эксплуатации
ki - номинальное значение коэффициент надежности
a1 - коэффициент учитывающий влияние электрической нагрузки по U, I или P
a2 - коэффициент учитывающий влияние температуры среды
a3 - коэффициент снижения нагрузки от номинальной по U, I или P
a4 - коэффициент использования данного элемента, к работе ОБ в целом

Условия эксплуатации

Коэффициент условий

Лабораторные условия

Аппаратура стационарная:

В помещениях

Вне помещений

Подвижная аппаратура:

Корабельная

Автомобильная

Поездная

Наименование элемента и его параметры

Коэффициент нагрузки

Резисторы:

По напряжению

По мощности

Конденсаторы

По напряжению

По реактивной мощности

По прямому току

По обратному напряжению

По температуре перехода

По току коллектора

По напряж. коллектор-эмиттер

По рассеиваемой мощности

Порядок расчета состоит в следующем:
1. Определяют количественные значения параметров, характеризующие нормальную работу ОБ.
2. Составляют поэлементную принципиальную схему ОБ, определяющую соединение элементов при выполнении ими заданной функции. Вспомогательные элементы, использующиеся при выполнении функции ОБ, не учитываются.
3. Определяются исходные данные для расчета надежности:

  • тип, количество, номинальные данные элементов
  • режим работы, температура среды и другие параметры
  • коэффициент использования элементов
  • коэффициент условий эксплуатации системы
  • определяется базовый элемент l b и интенсивность отказов l b "
  • по формуле: ki "= a 1* a 2* a 3* a 4* ki * ku определяется коэффициент надежности

4. Определяются основные показатели надежности ОБ, при логически последовательном (основном) соединении элементов, узлов и устройств:

  • вероятность безотказной работы : P(t)=exp{- l b*To*} , где
    Ni - число одинаковых элементов в ОБ
    n - общее число элементов в ОБ, имеющих основное соединение
  • наработка на отказ :
    To=1/{ l b*}

Если в схеме ОБ есть участки с параллельным соединением элементов, то сначала делается расчет показателей надежности отдельно для этих элементов, а затем для ОБ в целом.
5. Найденные показатели надежности сравниваются с требуемыми. Если не соответствуют, то принимаются меры к повышению надежности ОБ ().
6. Средствами повышения надежности ОБ являются:
- введение избыточности, которая бывает:

  • внутриэлементная - применение более надежных элементов
  • структурная - резервирование - общее или раздельное

Пример расчета:
Рассчитаем основные показатели надежности для вентилятора на асинхронном электродвигателе. Схема приведена на . Для пуска М замыкают QF, а затем SB1. KM1 получает питание, срабатывает и своими контактами КМ2 подключает М к источнику питания, а вспомогательным контактом шунтирует SB1. Для отключения М служит SB2.

В защите М используются FA и тепловое реле KK1 с КК2. Вентилятор работает в закрытом помещении при T=50 C в длительном режиме. Для расчета применим коэффициентный метод, используя коэффициенты надежности компонент схемы. Принимаем интенсивность отказов базового элемента l b =3*10 -8 . На основании принципиальной схемы и ее анализа, составим основную схему для расчета надежности (). В расчетную схему включены компоненты, отказ которых приводит к полному отказу устройства. Исходные данные сведем в .

Базовый элемент, 1/ч

l б

3*10 -8

Коэф. условий эксплуатации

Интенсивность отказов

l б ’

l б* ku =7,5*10 -8

Время работы, ч

Элемент принципиальной схемы

Элемент расчетной схемы

Число элементов

Коэф. надежности

Коэф. нагрузки

Коэф. электрической нагрузки

Коэф. температуры

Коэф. нагрузки по мощности

Коэф. использования

Произведение коэф. a

Коэф. надежности

S (Ni * ki ’)

Наработка до отказа, ч

1/[ l б ’* S (Ni*ki’)]=3523,7

Вероятность

е [- l б ’*To* S (Ni*ki’)] =0,24

По результатам расчета можно сделать выводы:
1. Наработка до отказа устройства: To=3524 ч.
2. Вероятность безотказной работы: p(t)=0,24. Вероятность того, что в пределах заданного времени работы t в заданных условиях работы не возникнет отказа.

Частные случай расчета надежности.

1. Объект (далее ОБ) состоит из n блоков, соединенных последовательно (). Вероятность безотказной работы каждого блока p. Найти вероятность безотказной работы P системы в целом.

Решение: P = p n
2. ОБ состоит из n блоков, соединенных параллельно (). Вероятность безотказной работы каждого блока p. Найти вероятность безотказной работы P системы в целом.

Решение: P =1-(1- p ) 2
3. ОБ состоит из n блоков, соединенных параллельно (). Вероятность безотказной работы каждого блока p. Вероятность безотказной работы переключателя (П) p1. Найти вероятность безотказной работы P системы в целом.

Решение: P=1-(1-p)*(1-p1*p)
4. ОБ состоит из n блоков (), с вероятность безотказной работы каждого блока p. С целью повышения надежности ОБ произведено дублирование, еще такими-же блоками. Найти вероятность безотказной работы системы: с дублированием каждого блока Pa, с дублированием всей системы Pb.

Решение: Pa = n Pb = 2
5. ОБ состоит из n блоков (см. рис. 10). При исправном C вероятность безотказной работы U1=p1, U2=p2. При неисправном C вероятность безотказной работы U1=p1", U2=p2". Вероятность безотказной работы C=ps. Найти вероятность безотказной работы P системы в целом.

Решение: P = ps *+(1- ps )*
9. ОБ состоит из 2-х узлов U1 и U2. Вероятность безотказной работы за время t узлов: U1 p1=0.8, U2 p2=0.9. По истечении времени t ОБ несправен. Найти вероятность, что:
- H1 - неисправен узел U1
- H2 - неисправен узел U2
- H3 - неисправны узлы U1 и U2
Решение: Очевидно, имело место H0, когда оба узла исправны.
Событие A=H1+H2+H3
Априорные (первоначальные) вероятности:
- P(H1)=(1-p1)*p2 =(1-0.8)*0.9=0.2*0.9=0.18
- P(H2)=(1-p2)*p1 =(1-0.9)*0.8=0.1*0.8=0.08
- P(H3)=(1-p1)*(1-p2) =(1-0.8)*0.9=0.2*0.1=0.02
- A= i=1 å 3 *P(Hi)=P(H1)+P(H2)+P(H3) =0.18+0.08+0.02=0.28
Апостерионые (конечные) вероятности:
- P(H1/A)=P(H1)/A=0.18/0.28=0.643
- P(H2/A)=P(H2)/A=0.08/0.28=0.286
- P(H3/A)=P(H3)/A=0.02/0.28=0.071
10. ОБ состоит из m блоков типа U1 и n блоков типа U2. Вероятность безотказной работы за время t каждого блока U1=p1, каждого блока U2=p2. Для работы ОБ достаточно, чтобы в течение t работали безотказно любые 2-а блока типа U1 и одновременно с этим любые 2-а блока типа U2. Найти вероятность безотказной работы ОБ.
Решение: Событие A (безотказная работа ОБ) есть произведение 2-х событий:
- A1 - (не менее 2-х из m блоков типа U1 работают)
- A2 - (не менее 2-х из n блоков типа U2 работают)
Число X1 работающих безотказно блоков типа U1 есть случайная величина, распределенная по биномиальному закону с параметрами m, p1. Событие A1 состоит в том, что X1 примет значение не менее 2, поэтому:

P(A1 )=P{X1>2}=1-P(X1<2)=1-P(X1=0)-P(X1=1)=1-(g1 m +m*g2 m-1 *p1) , где g1=1-p1

аналогично: P(A2)=1-(g2 n +n*g2 n-1 *p2) , где g2=1-p2

Вероятность безотказной работы ОБ:

R =P(A)=P(A1)*P(A2)=* , где g1=1-p1, g2=1-p2

11. ОБ состоит из 3-х узлов (). В узле U1 n1 элементов с интенсивностью отказов l1. В узле U2 n2 элементов с интенсивностью отказов l2. В узле U3 n3 элементов с интенсивностью отказов l2, т.к. U2 и U3 дублируют друг друга. U1 выходит из строя если в нем отказало не менее 2-х элементов. U2 или U3, т.к. дублируются, выходят из строя если в них отказал хотя бы один элемент. ОБ выходит из строя если отказал U1 или U2 и U3 вместе. Вероятность безотказной работы каждого элемента p. Найти вероятность того, что за время t ОБ не выйдет из строя.
Вероятности выхода из строя U 2 и U 3 равны:

R2=1-(1-p2) n2 R3=1-(1-p3) n3

Вероятности выхода из строя всего ОБ:
R=R1+(1-R1)*R2*R3

Литература:

  • Малинский В.Д. и др. Испытания радиоаппаратуры, "Энергия", 1965 г.
  • ГОСТ 16503-70 - "Промышленные изделия. Номенклатура и характеристика основных показателей надежности".
  • Широков А.М. Надежность радиоэлектронных устройств, М, Высшая школа, 1972 г.
  • ГОСТ 18322-73 - "Системы технического обслуживания и ремонта техники. Термины и определения".
  • ГОСТ 13377-75 - "Надежность в технике. Термины и определения".
  • Козлов Б.А., Ушаков И.А. Справочник по расчету надежности аппаратуры радиоэлектроники и автоматики, М, Сов. Радио, 1975 г.
  • Перроте А.И., Сторчак М.А. Вопросы надежности РЭА, М, Сов. Радио, 1976 г.
  • Левин Б.Р. Теория надежности радиотехнических систем, М, Сов. Радио, 1978 г.
  • ГОСТ 16593-79 - "Электроприводы. Термины и определения".

И. Брагин 08.2003 г.

Частотой отказов называется отношение числа отказавших образцов аппаратуры в единицу времени к числу образцов, первоначально установленных на испытание при условии, что отказавшие образцы не восстанавливаются и не заменяются исправными.

Так как число отказавших образцов в интервале времени может зависеть от расположения этого промежутка по оси времени, то чистота отказов является функцией времени. Эта характеристика и дальнейшем обозначается.

Интервал времени;

Число образцов аппаратуры, первоначально установленных на испытание

Выражение (10) является статистическим определением частоты отказов. Этой количественной характеристике надежности легко дать, вероятностное определение. Вычислим в выражении (10) , т. е. число образцов, отказавших в интервале.

Очевидно:

где N() -- число образцов, исправно работающих к моменту времени;

Число образцов, исправно работающих к моменту времени;

При достаточно большом числе образцов справедливы соотношения:

Подставляя (11) в (10) и учитывая (12), (13), получим:

Устремляя к нулю и переходя к пределу, получим:

или с учетом (4):

Из этого выражения видно, что частота отказов есть плотность распределения времени работы аппаратуры до ее отказа. Численно она равна взятой с обратным знаком производной от вероятности безотказной работы. Выражение (16) является вероятностным определением частоты отказов.

Таким образом, между частотой отказов, вероятностью безотказной работы и вероятностью отказов при любом законе распределения времени возникновения отказов существуют однозначные зависимости. Эти зависимости на основании (16) и (4) имеют вид:

Средней частотой отказов называется отношение числа отказавших образцов в единицу времени к числу испытываемых образцов при условии, что все образцы, вышедшие из строя, заменяются исправными (новыми или восстановленными).

Интенсивность отказов

Интенсивностью отказов называется отношение числа отказавших образцов аппаратуры в единицу времени к среднему числу образцов, исправно работающих в данный отрезок времени при условии, что отказавшие образцы не восстанавливаются и не заменяются исправными.

где - число отказавших образцов в интервале времени от до;

Интервал времени;

Среднее число исправно работающих образцов в интервале;

Число исправно работающих образцов в начале интервала;

Число исправно работающих образцов в конце интервала.

Выражение (19) является статистическим определением интенсивности отказов. Для вероятностного представления этой характеристики установим зависимость между интенсивностью отказов, вероятностью безотказной работы и частотой отказов.

Подставим в выражение (19) вместо его значение из (11) и (12). Тогда получим:

Учитывая, найдем:

Устремляем к нулю и переходя к пределу, получим:

Интегрируя, получим:

Среднее время безотказной работы

Среднее время безотказной работы называется математическое ожидание времени безотказной работы. Среднее время безотказной работы определяется зависимостью:

Для определения среднего времени безотказной работы из статических данных пользуются формулой:

где -время безотказной работы i-го образца;

N0 - число образцов, над которыми проводится испытание.

Подставим в выражение (25) вместо производную от безотказной работы с обратным знаком и выполним интегрирование по частям. Получим:

Так как не может иметь отрицательное значение, то заменится на 0, т.к. и, тогда:

Лекция № 3

Тема № 1. Показатели надежности ЭМС

Показатели надежности характеризуют такие важнейшие свойства систем, как безотказность , живучесть , отказоустойчивость , ремонтопригодность , сохраняемость , долговечность и являются количественной оценкой их технического состояния и среды, в которой они функционируют и эксплуатируются. Оценка показателей надежности сложных технических систем на различных этапах жизненного цикла используется для выбора структуры системы из множества альтернативных вариантов, назначения гарантийных сроков эксплуатации, выбора стратегии и тактики технического обслуживания, анализа последствий отказов элементов системы.

Аналитические методы оценки показателей надежности сложных технических систем управления и принятия решения базируются на положениях теории вероятности. В силу вероятностной природы отказов оценка показателей основана на использовании методов математической статистики. При этом статистический анализ проводится, как правило, в условиях априорной неопределенности относительно законов распределения случайных значений наработки системы, а также по выборкам ограниченного объема, содержащих данные о моментах отказа элементов системы при из испытаниях или в условиях эксплуатации.

Вероятность безотказной работы (ВБР) – это вероятность того, что при определенных условиях эксплуатации в заданном интервале времени не произойдет ни одного отказа. Вероятность P (t ) – функция, убывающая см. рис.1 причем,

ВБР по статистическим данным об отказах оценивается выражением

(1)

где – статистическая оценка ВБР; – число изделий в начале испытаний, при большом числе изделий статистическая оценка практически совпадает с вероятностью P (t ) ; –число отказавших изделий за время t .

Рисунок 1. Кривые вероятности безотказной работы и вероятности отказов

Вероятность отказа Q ( t ) – это вероятность того, что при определенных условиях эксплуатации в заданном интервале времени произойдет хотя бы один отказ. Отказ и безотказная работа – события противоположенные и несовместимые

(2)

Частота отказов a ( t ) – есть отношение отказавших изделий в единицу времени к первоначальному числу испытываемых изделий

(3)

где –число отказавших изделий в интервале времени Dt .

Частота отказов или плотность вероятности отказов может быть определена как производная по времени вероятности отказов

Знак (-) характеризует скорость снижения надежности во времени.

Средняя наработка до отказа – среднее значение продолжительности работы неремонтируемого устройства до первого отказа:

где – продолжительность работы (наработка) до отказа i -гo устройства; – число наблюдаемых устройств.

Пример. Наблюдения за эксплуатацией 10 электродвигателей выявили, что первый проработал до отказа 800 ч, второй – 1200 и далее соответственно; 900, 1400, 700, 950, 750, 1300, 850 и 1500 ч. Определить наработку двигателей до внезапного отказа,

Решение . По (5) имеем

Интенсивность отказов l ( t ) – условная плотность вероятности возникновения отказа, которая определяется как отношение числа отказавших изделий в единицу времени к среднему числу изделий, исправно работающих в данный отрезок времени

, (6)

где – число устройств, отказавших в период времени ; – число среднее число устройств, исправно работающих в период наблюдения; – период наблюдения.

Вероятность безотказной работы Р(t) через выразится

. (8)

Пример 1. При эксплуатации 100 трансформаторов в течение 10 лет произошло два отказа, причём каждый раз отказывал новый трансформатор. Определить интенсивность отказов трансформатора за период наблюдения.

Решение. По (6) имеем отк./год.

Пример2 . Изменение числа отказов BJI из-за производственной деятельности сторонних организаций по месяцам года представлено следующим образом:

Определить среднемесячную интенсивность отказов.

Решение. ; отк./ мес.

Ожидаемая расчетная интенсивность l = 7,0.

Средняя наработка на отказ – среднее значение наработки ремонтируемого устройства между отказами, определяемое как среднее арифметическое:

, (9)

где – наработка до первого, второго, n -го отказа; n – число отказов от момента начала эксплуатации до окончания наблюдения. Наработка на отказ, или среднее время безотказной работы, есть математическое ожидание :

. (10)

Пример. Трансформатор отказал, проработав около года. После устранения причины отказа он проработал еще три года и опять вышел из строя. Определить среднюю наработку трансформатора на отказ.

Решение . По (1.7) вычислим года.

Параметр потока отказов – среднее количество отказов ремонтируемого устройства в единицу времени, взятое для рассматриваемого момента времени:

(11)

где – число отказов i -го устройства по состоянию на рассматриваемые моменты времени – и t соответственно; N – число устройств; – рассматриваемый период работы, причём .

Отношение среднего числа отказов восстанавливаемого объекта за произвольно малую его наработку к значению этой наработки

Пример . Электротехническое устройство состоит из трех элементов. В течение первого года эксплуатации в первом элементе произошло два отказа, во втором – один, в третьем отказов не было. Определить параметр потока отказов.

Решение

Откуда по (1.8)

Среднее значение ресурса рассчитывают по данным эксплуатации или испытаний с использованием уже известного выражения для наработки:

.

Среднее время восстановления – среднее время вынужденного или регламентированного простоя, вызванного обнаружением и устранением одного отказа:

где – порядковый номер отказа; – среднее время обнаружения и устранения отказа.

Коэффициент готовности – вероятность того, что оборудование будет работоспособно в произвольно выбранный момент времени в промежутках между выполнениями планового технического обслуживания. При экспоненциальном законе распределения времени безотказной работы и времени восстановления коэффициент готовности

.

Коэффициент вынужденного простоя – это отношение времени вынужденного простоя к сумме времени исправной работы и вынужденных простоев.

Коэффициент технического использования – это отношение наработки оборудования в единицах времени за некоторый период эксплуатации к сумме этой наработки и времени всех простоев, вызванных, техническим обслуживанием и ремонтами за тот же период эксплуатации:

.

Кроме того [ГОСТ 27.002-83] определяет показатели долговечности , в терминах которых следует указывать вид действий после наступления предельного состояния объекта (например, средний ресурс до капитального ремонта; гамма-процентный ресурс до среднего ремонта и т.д.). Если предельное состояние обуславливает окончательное снятие объекта с эксплуатации, то показатели долговечности называются: полный средний ресурс (срок службы), полный гамма-процентный ресурс (срок службы), полный назначенный ресурс (срок службы).

Средний ресурс – математическое ожидание ресурса.

Гамма-процентный ресурс – наработка, в течение которой объект не достигнет предельного состояния с заданной вероятностью g, выраженной в процентах.

Назначенный ресурс – суммарная наработка объекта, при достижении которой применение по назначению должно быть прекращено.

Средний срок службы – математическое ожидание срока службы.

Гамма-процентный срок службы – календарная продолжительность от начала эксплуатации объекта, в течение которой он не достигнет предельного состояния с заданной вероятностью g, выраженной в процентах.

Назначенный срок службы – календарная продолжительность эксплуатации объекта, при достижении которой применение по назначению должно быть прекращено.

Показатели ремонтопригодности и сохраняемости определяются следующим образом.

Вероятность восстановления работоспособного состояния – это вероятность того, что время восстановления работоспособного состояния объекта не превысит заданного.

Среднее время восстановления работоспособного состо яния – это математическое ожидание времени восстановления работоспособного состояния.

Средний срок сохраняемости – это математическое ожидание срока сохраняемости.

Гамма-процентный срок сохраняемости – это срок сохраняемости, достигаемый объектом с заданной вероятностью , выраженной в процентах.

Обзоры