Взаимная корреляция сигналов. Корреляционный анализ сравнение двух сигналов. Корреляционная функция сигнала. Сравнение сигналов, сдвинутых во времени. Корреляционный анализ сигналов

Вид алгоритма оптимального приема, а также качественные показатели системы передачи дискретных сообщений существенно зависят от характеристики

которую будем называть взаимокорреляционной функцией позиции комплексного опорного сигнала и комплексного принимаемого поля, соответствующего позиции, где временной сдвиг между ними, обусловленный несогласованностью во времени.

Функция является мерой «различия» (или «близости») сигналов с индексами Если в ансамбль сигналов включить и все реализации помехи в канале, то эта функция определит также меру «различия» («близости») между сигналом и помехой, а также между отдельными реализациями помехи. Такая характеристика различимости сигнала и помехи использована в ряде работ, например .

При выводе последних формул учтены соотношения, следующие из равенства Парсеваля:

Функции будем называть соответственно функцией взаимной корреляции принимаемых сигналов и функцией взаимной корреляции сопряженных сигналов в месте приема. Первая из них определяет свойства оптимального когерентного приема, в то время как для характеристики оптимального приема при неопределенной фазе сигнала (некогерентный прием) требуется знание только модуля (огибающей) комплексной функции корреляции

Комплексный опорный сигнал, используемый в схемах оптимального когерентного приема (см. ниже)

где функция, являющаяся решением интегрального уравнения

где корреляционная функция аддитивной помехи. Поскольку корреляционная функция может быть разложена в билинейный ряд по своим собственным функциям

где собственные числа, то решение интегрального уравнения (1.52) можно записать в виде

В том случае, когда помеха является суммой двух частей - сосредоточенной и флуктуационной, некоррелированных между собой, разлагая корреляционную функцию сосредоточенной части помехи в ряд (1.53), получаем

где собственные числа и собственные функции, соответствующие Поскольку корреляционная функция белого шума со спектральной плотностью для любого ортонормированного базиса представима в виде

(все собственные числа одинаковы и равны N), то

С учетом (1.51) функцию будем также называть взвешенной [с весом комплексной взаимокорреляционной

функцией двух реализаций комплексных сигналов в месте приема Выражение (1.51) можно записать в виде

Предполагай весовую функцию однородной, т. е. можно показать, что и связаны между собой парой преобразований Гильберта. Ансамбли сигналов, для которых

будем называть ортогональными в месте приема при произвольных временных сдвигах Если выполняется условие то будем говорить об ортогональной системе сигналов в месте приема.

Если в (1-47) то будем называть корреляционной функцией принимаемых комплексных сигналов. Фактически можно говорить лишь о приближенном выполнении условия (1.59), так как его строгое выполнение возможно лишь при использовании сигналов, спектры которых нигде не перекрываются, что неосуществимо. На практике условия (1.59) часто выполняются при любых лишь при значениях

В этом случае будем говорить, что при несовпадении индексов выполняется условие узости для взаимокорреляционной функции, а при совпадении индексов - условие узости корреляционных функций.

Введем нормированные корреляционные функции при

Энергетическое отношение (сигнал/помеха) для сигнала в месте приема. Можно показать, что Следовательно, нормированная корреляционная функция (1.61) удовлетворяет условию Аналогично можно показать, что такому же условию удовлетворяет и нормированная функция корреляции сопряженных принимаемых сигналов

При неопределенной фазе сигнала в некоторых случаях свойства приемника характеризуются огибающей (1.50) и соответственно нормированной огибающей

Назовем систему принимаемых сигналов, для которой

ортогональной в усиленном смысле при произвольных временных сдвигах

Очень часто мы имеем дело с системой сигналов, удовлетворяющих условию которую будем, пользуясь терминологией , называть ортогональной в усиленном смысле (в месте приема).

На практике условия (1.64) обычно выполняются лишь в границах (1.60).

Аналогично введенным характеристикам принимаемых сигналов можно ввести взвешенные корреляционные и взаимокорреляционные характеристики передаваемых сигналов:

Это условие обеспечивает также ортогональность принимаемых сигналов в усиленном смысле при произвольных сдвигах во времени.

При определенном фазировании в канале для обычной ортогональности принимаемых сигналов достаточна ортогональность передаваемых сигналов (с тем же весом).

Для однолучевого канала ортогональность и ортогональность в усиленном смысле принимаемых сигналов при любых временных сдвигах эквивалентны соответственно ортогональности и ортогональности в усиленном смысле при любых временных сдвигах передаваемых сигналов с весом

Для узкополосных передаваемых и принимаемых сигналов ортогональность в усиленном смысле при произвольных ненулевых сдвигах равносильна обычной ортогональности при любых сдвигах. Однако для таких сигналов ортгональность в усиленном смысле (при ) не эквивалентна обычной ортогональности.


Корреляционный анализ может быть применен для проверки наличия полезного сигнала на фоне присутствующих шумов и помех, а также для проверки эффективности работы цифровых фильтров. В первом случае рассчитывается нормированная корреляционная функция между фрагментом полезного сигнала и числовым рядом дискретизированного входного зашумленного сигнала. По графику корреляционной функции визуально обнаруживают присутствие искомого сигнала в зашумленном входном сигнале.

Во втором случае, с целью проверки эффективности фильтрации, сначала рассчитывается корреляционная функция полезного эталонного сигнала, представленного числовым рядом, и отфильтрованного сигнала. После чего путем применения прямого дискретного преобразования Фурье к корреляционной функции получают коррелограмму. На полученном графике строят линию критического уровня с учетом ошибки фильтрации с использованием критерия Стьюдента. Эффективность фильтрации определяют визуально: выше критического уровня должны находиться только составляющие спектральной плотности полезного сигнала.

Для большей наглядности и объективности рассчитывается выборочный коэффициент корреляции между числовыми рядами эталонного (исходного полезного) и отфильтрованного сигналов. Коэффициент корреляции может принимать значения в интервале –1…1. Отрицательные значения говорят о том, что эталонный и отфильтрованный сигналы коррелируют в противофазе, т.е. при инверсии отфильтрованного сигнала. В случае если цифровой фильтр обладает хорошей эффективностью фильтрации от помех и шумов, коэффициент корреляции принимает значения, близкие к 1 или –1. Качество разных цифровых фильтров применительно к конкретному сигналу может быть определено путем сравнения рассчитанных коэффициентов корреляции.

Расчет корреляционной функции дискретных сигналов производится следующим образом. Для дискретных сигналов Х(i) и Y(i), i = 1… N выбирается фрагмент массива Y(i), i = 1… N/2 и рассчитывается корреляционная функция

где – величина сдвига в дискретах.

Коррелограмму или спектр корреляционной функции получают путем применения прямого дискретного преобразования Фурье к корреляционной функции:

- действительная часть спектра

;

- мнимая часть спектра

;

- модуль спектральной плотности корреляционной функции

Частоты, соответствующие значениям спектра ,

где – период дискретизации входного сигнала.

Расчет коэффициента корреляции между дискретными сигналами (числовыми рядами) Х(i) и Y(i), i = 1… N производится следующим образом.



Средние значения (математические ожидания) для числовых рядов Х(i) и Y(i):

Дисперсии

; .

Второй смешанный центральный момент

.

Выборочный коэффициент корреляции

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Функции корреляции сигналов применяются для интегральных количественных оценок формы сигналов и степени их сходства друг с другом.

Автокорреляционные функции (АКФ) сигналов (correlation function, CF). Применительно к детерминированным сигналам с конечной энергией АКФ является количественной интегральной характеристикой формы сигнала, и представляет собой интеграл от произведения двух копий сигнала s(t), сдвинутых относительно друг друга на время t:

B s (t) = s(t) s(t+t) dt. (2.25)

Как следует из этого выражения, АКФ является скалярным произведением сигнала и его копии в функциональной зависимости от переменной величины значения сдвига t. Соответственно, АКФ имеет физическую размерность энергии, а при t = 0 значение АКФ непосредственно равно энергии сигнала:

B s (0) =s(t) 2 dt = E s .

Функция АКФ является непрерывной и четной. В последнем нетрудно убедиться заменой переменной t = t-t в выражении (2.25):

B s (t) =s(t-t) s(t) dt = s(t) s(t-t) dt = B s (-t). (2.25")

С учетом четности, графическое представление АКФ производится только для положительных значений t. На практике сигналы обычно задаются на интервале положительных значений аргументов от 0-Т. Знак +t в выражении (2.25) означает, что при увеличении значений t копия сигнала s(t+t) сдвигается влево по оси t и уходит за 0, что требует соответствующего продления сигнала в область отрицательных значений аргумента. А так как при вычислениях интервал задания t, как правило, много меньше интервала задания сигнала, то более практичным является сдвиг копии сигнала влево по оси аргументов, т.е. применение в выражении (2.25) функции s(t-t) вместо s(t+t).

По мере увеличения значения величины сдвига t для финитных сигналов временное перекрытие сигнала с его копией уменьшается и скалярное произведение стремятся к нулю.

Пример. На интервале (0,Т) задан прямоугольный импульс с амплитудным значением, равным А. Вычислить автокорреляционную функцию импульса.

При сдвиге копии импульса по оси t вправо, при 0≤t≤T сигналы перекрываются на интервале от t до Т. Скалярное произведение:

B s (t) =A 2 dt = A 2 (T-t).

При сдвиге копии импульса влево, при -T≤t<0 сигналы перекрываются на интервале от 0 до Т-t. Скалярное произведение:

B s (t) = A 2 dt = A 2 (T+t).

При |t| > T сигнал и его копия не имеют точек пересечения и скалярное произведение сигналов равно нулю (сигнал и его сдвинутая копия становятся ортогональными).

Обобщая вычисления, можем записать:

В случае периодических сигналов АКФ вычисляется по одному периоду Т, с усреднением скалярного произведения и его сдвинутой копии в пределах периода:



B s (t) = (1/Т)s(t) s(t-t) dt.

При t=0 значение АКФ в этом случае равно не энергии, а средней мощности сигналов в пределах интервала Т. АКФ периодических сигналов также является периодической функцией с тем же периодом Т. Для однотонального гармонического сигнала это очевидно. Первое максимальное значение АКФ будет соответствовать t=0. При сдвиге копии сигнала на четверть периода относительно оригинала подынтегральные функции становятся ортогональными друг другу (cos w o (t-t) = cos (w o t-p/2) º sin w o t) и дают нулевое значение АКФ. При сдвиге на t=T/2 копия сигнала по направлению становится противоположной самому сигналу и скалярное произведение достигает минимального значения. При дальнейшем увеличении сдвига начинается обратный процесс увеличения значений скалярного произведения с пересечением нуля при t=3T/2 и повторением максимального значения при t=T=2p/w o (cos w o t-2p копии º cos w o t сигнала). Аналогичный процесс имеет место и для периодических сигналов произвольной формы (рис. 2.11).

Отметим, что полученный результат не зависит от начальной фазы гармонического сигнала, что характерно для любых периодических сигналов и является одним из свойств АКФ.

Для сигналов, заданных на определенном интервале , вычисление АКФ производится с нормировкой на длину интервала :

B s (t) =s(t) s(t+t) dt. (2.26)

Автокорреляция сигнала может оцениваться и функцией автокорреляционных коэффициентов, вычисление которых производится по формуле (по центрированным сигналам):

r s (t) = cos j(t) = ás(t), s(t+t)ñ /||s(t)|| 2 .

Взаимная корреляционная функция (ВКФ) сигналов (cross-correlation function, CCF) показывает как степень сходства формы двух сигналов, так и их взаимное расположение друг относительно друга по координате (независимой переменной), для чего используется та же формула (2.25), что и для АКФ, но под интегралом стоит произведение двух разных сигналов, один из которых сдвинут на время t:

B 12 (t) = s 1 (t) s 2 (t+t) dt. (2.27)

При замене переменной t = t-t в формуле (2.4.3), получаем:

B 12 (t) =s 1 (t-t) s 2 (t) dt =s 2 (t) s 1 (t-t) dt = B 21 (-t)

Рис. 2.12. Сигналы и ВКФ

Отсюда следует, что для ВКФ не выполняется условие четности, а значения ВКФ не обязаны иметь максимум при t = 0. Это можно наглядно видеть на рис. 2.12, где заданы два одинаковых сигнала с центрами на точках 0.5 и 1.5. Вычисление по формуле (2.27) с постепенным увеличением значений t означает последовательные сдвиги сигнала s2(t) влево по оси времени (для каждого значения s1(t) для подынтегрального умножения берутся значения s2(t+t)).

При t=0 сигналы ортогональны и значение B 12 (t)=0. Максимум В 12 (t) будет наблюдаться при сдвиге сигнала s2(t) влево на значение t=1, при котором происходит полное совмещение сигналов s1(t) и s2(t+t). При вычислении значений B 21 (-t) аналогичный процесс выполняется последовательным сдвигом сигнала s1(t) вправо по временной оси с постепенным увеличением отрицательных значений t, а соответственно значения B 21 (-t) являются зеркальным (относительно оси t=0) отображением значений B 12 (t), и наоборот. На рис. 2.13 это можно видеть наглядно.

Рис. 2.13. Сигналы и ВКФ

Таким образом, для вычисления полной формы ВКФ числовая ось t должна включать отрицательные значения, а изменение знака t в формуле (2.27) равносильно перестановке сигналов.

Для периодических сигналов понятие ВКФ обычно не применяется, за исключением сигналов с одинаковым периодом, например, сигналов входа и выхода систем при изучении характеристик систем.

Функция коэффициентов взаимной корреляции двух сигналов вычисляется по формуле (по центрированным сигналам):

r sv (t) = cos j(t) = ás(t), v(t+t)ñ /||s(t)|| ||v(t)||. (2.28)

Значение коэффициентов взаимной корреляции может изменяться от -1 до 1.

Смысл спектрального анализа сигналов заключается в изучении того, как сигнал может быть представлен в виде суммы (или интеграла) простых гармонических колебаний и как форма сигнала определяет структуру распределения по частотам амплитуд и фаз этих колебаний. В противоположность этому задачей корреляционного анализа сигналов является определение меры степени сходства и различия сигналов или сдвинутых по времени копий одного сигнала. Введение меры открывает пути к проведению количественных измерений степени схожести сигналов. Будет показано, что существует определенная взаимосвязь между спектральными и корреляционными характеристиками сигналов.

3.1 Автокорреляционная функция (акф)

Автокорреляционная функция сигнала с конечной энергией – это значение интеграла от произведения двух копий этого сигнала, сдвинутых относительно друг друга на время τ, рассматриваемое в функции этого временного сдвига τ:

Если сигнал определен на конечном интервале времени , то его АКФ находится как:

,

где
- интервал перекрытия сдвинутых копий сигнала.

Считается, что чем больше значение автокорреляционной функции
при данном значении, тем в большей степени две копии сигнала, сдвинутые на промежуток времени, похожи друг на друга. Поэтому корреляционная функция
и является мерой сходства для сдвинутых копий сигнала.

Вводимая таким образом мера сходства для сигналов, имеющих форму случайных колебаний вокруг нулевого значения, обладает следующими характерными свойствами.

Если сдвинутые копии сигнала колеблются примерно в такт друг к другу, то это является признаком их схожести и АКФ принимает большие положительные значения (большая положительная корреляция). Если копии колеблются почти в противофазе, АКФ принимает большие отрицательные значения (антисходство копий сигнала, большая отрицательная корреляция).

Максимум АКФ достигается при совпадении копий, то есть при отсутствии сдвига. Нулевые значения АКФ достигаются при сдвигах, при которых не заметно ни сходства, ни антисходства копий сигнала (нулевая корреляция, отсутствие корреляции).

На рис.3.1 изображен фрагмент реализации некоторого сигнала на интервале времени от 0 до 1 с. Сигнал случайным образом колеблется вокруг нулевого значения. Поскольку интервал существования сигнала конечен, то конечна и его энергия. Его АКФ можно вычислить в соответствии с уравнением:

.

Автокорреляционная функция сигнала, вычисленная вMathCad в соответствии с этим уравнением, представлена на рис. 3.2. Корреляционная функция показывает не только то, что сигнал похож сам на себя (сдвиг τ=0), но и то, что некоторой схожестью обладают и копии сигнала, сдвинутые друг относительно друга приблизительно на 0.063 с (боковой максимум автокорреляционной функции). В противоположность этому копии сигнала сдвинутые на 0.032 с, должны быть антипохожи дуг на друга, то есть быть в некотором смысле противоположными друг другу.

На рис.33 показаны пары этих двух копий. По рисунку можно проследить, что понимается под похожестью и антипохожестью копий сигнала.

Корреляционная функция обладает следующими свойствами:

1. При τ = 0 автокорреляционная функция принимает наибольшее значение, равное энергии сигнала

2. Автокорреляционная функция является четной функцией временного сдвига
.

3. С ростом τ автокорреляционная функция убывает до нуля

4. Если сигнал не содержит разрывов типа δ - функций, то
- непрерывная функция.

5. Если сигнал является электрическим напряжением, то корреляционная функция имеет размерность
.

Для периодических сигналов в определении автокорреляционной функции тот же самый интеграл делят еще на период повторения сигнала:

.

Так введенная корреляционная функция отличается следующими свойствами:


Для примера вычислим корреляционную функцию гармонического колебания :

Используя ряд тригонометрических преобразований, получим окончательно:

Таким образом, автокорреляционная функция гармонического колебания является косинусоидой с тем же периодом изменения, что и сам сигнал. При сдвигах, кратных периоду колебания, гармоника преобразуется в себя и АКФ принимает наибольшие значения, равные половине квадрата амплитуды. Сдвиги по времени, кратные половине периода колебания, равносильны смещению фазы на угол
, при этом меняется знак колебаний, а АКФ принимает минимальное значение, отрицательное и равное половине квадрата амплитуды. Сдвиги, кратные четверти периода, переводят, например, синусоидальное колебание в косинусоидальное и наоборот. При этом АКФ обращается в нуль. Такие сигналы, находящиеся в квадратуре друг относительно друга, с точки зрения автокорреляционной функции оказываются совершенно не похожими друг на друга.

Важным является то, что в выражение для корреляционной функции сигнала не вошла его начальная фаза. Информация о фазе потерялась. Это означает, что по корреляционной функции сигнала нельзя восстановить сам сигнал. Отображение
в противоположность отображению
не является взаимно однозначным.

Если под механизмом генерирования сигналов понимать некоего демиурга, создающего сигнал по выбранной им корреляционной функции, то он смог бы создать целую совокупность сигналов (ансамбль сигналов), имеющих действительно одну и ту же корреляционную функцию, но отличающихся друг от друга фазовыми соотношениями.

    актом проявления сигналом своей свободной воли, независимой от воли создателя (возникновение отдельных реализаций некоторого случайного процесса),

    результатом постороннего насилия над сигналом (введение в сигнал измерительной информации, получаемой при проведении измерений какой либо физической величины).

Аналогичным образом обстоит дело с любым периодическим сигналом. Если периодический сигнал с основным периодом Т имеет амплитудный спектр
и фазовый спектр
, то корреляционная функция сигнала принимает следующий вид:

.

Уже в этих примерах проявляется некоторая связь между корреляционной функцией и спектральными свойствами сигнала. Подробнее об этих соотношениях речь пойдет в дальнейшем.

Настройка