Временные характеристики линейных цепей. Временные характеристики цепи. Передаточная функция в операторной форме

Ранее мы рассматривали частотные характеристики, а временные характеристики описывают поведение цепи во времени при заданном входном воздействии. Таких характеристик всего две: переходная и импульсная.

Переходная характеристика

Переходная характеристика - h (t ) - есть отношение реакции цепи на входное ступенчатое воздействие к величине этого воздействия при условии, что до него в цепи не было ни токов, ни напряжений.

Ступенчатое воздействие имеет график:

1(t) – единичное ступенчатое воздействие.

Иногда используют ступенчатую функцию, начинающуюся не в момент «0»:

Для расчёта переходной характеристики к заданной цепи подключают постоянный ЭДС (если входное воздействие – напряжение) или постоянный источник тока (если входное воздействие – ток) и рассчитывают заданный в качестве реакции переходный ток или напряжение. После этого делят полученный результат на величину источника.

Пример: найти h (t ) для u c при входном воздействии в виде напряжения.

1)
,

2)
,

3)
,
,

,

Пример : ту же задачу решить при входном воздействии в виде тока

1)
,

2)
,

3)
,
,

,

Импульсная характеристика

Импульсная характеристика - g (t ) – есть отношение реакции цепи на входное воздействие в виде дельта - функции к площади этого воздействия при условии, что до подключения воздействия в схеме не было ни токов, ни напряжений.

δ(t ) – дельта-функция, дельта-импульс, единичный импульс, импульс Дирака, функция Дирака. Это есть функция:

Рассчитывать классическим методом g (t ) крайне неудобно, но так как δ(t ) формально является производной
, то найти её можно из соотношенияg (t )= h (0)δ(t ) + dh (t )/ dt .

Для экспериментального определения этих характеристик приходится действовать приближённо, то есть создать точное требуемое воздействие невозможно.

На вход падают последовательность импульсов, похожих на прямоугольные:

t ф – длительность переднего фронта (время нарастания входного сигнала);

t и – длительность импульса;

К этим импульсам предъявляют определённые требования:

а) для переходной характеристики:

- t паузы должно быть таким большим, чтобы к моменту прихода следующего импульса переходный процесс от окончания предыдущего импульса практически заканчивался;

- t и должно быть таким большим, чтобы переходный процесс, вызванный возникновением импульса, тоже практически успевал заканчиваться;

- t ф должно быть как можно меньше (так, чтобы за t ср состояние цепи практически не менялось);

- X m должна быть с одной стороны такой большой, чтобы с помощью имеющейся аппаратуры можно было бы зарегистрировать реакцию цепи, а с другой: такой маленькой, чтобы исследуемая цепь сохраняла свои свойства. Если всё это так, регистрируют график реакции цепи и изменяют масштаб по оси ординат в X m раз (X m =5В, ординаты поделить на 5).

б) для импульсной характеристики:

t паузы – требования такие же и к X m – такие же, к t ф требований нет (потому что даже сама длительность импульса t ф должна быть такой малой, чтобы состояние цепи практически не менялось. Если всё это так, регистрируют реакцию и изменяют масштаб по оси ординат на площадь входного импульса
.

Итоги по классическому методу.

Основным достоинством является физическая ясность всех используемых величин, что позволяет проверять ход решения с точки зрения физического смысла. В простых цепях удаётся очень легко получить ответ.

Недостатки: по мере возрастания сложности задачи быстро нарастает трудоёмкость решения, особенно на этапе расчёта начальных условий. Не все задачи удобно решать классическим методом (практически никто не ищет g (t ) , и у всех возникают проблемы при расчёте задач с особыми контурами и особыми сечениями).

До коммутации
,
.

Следовательно, по законам коммутации u c 1 (0) = 0 и u c 2 (0) = 0 , но из схемы видно, что сразу после замыкания ключа: E = u c 1 (0)+ u c 2 (0).

В таких задачах приходится применять особую процедуру поиска начальных условий.

Эти недостатки удаётся преодолеть в операторном методе.

К временным характеристикам цепей относятся переходная и импульсная характеристики.

Рассмотрим линейную электрическую цепь, не содержащую независимых источников тока и напряжения.

Пусть внешнее воздействие на цепь представляет собой функцию включения (единичный скачок) x(t) = 1(t - t 0).

Переходной характеристикой h(t - t 0) линейной цепи, не содержащей независимых источников энергии, называется отношение реакции этой цепи на воздействие единичного скачка тока или напряжения

Размерность переходной характеристики равна отношению размерности отклика к размерности внешнего воздействия, поэтому переходная характеристика может иметь размерность сопротивления, проводимости или быть безразмерной величиной.

Пусть внешнее воздействие на цепь имеет форму -функции

x(t) = d(t - t 0).

Импульсной характеристикой g (t - t 0) линейной цепи, не содержащей независимых источников энергии, называется реакция цепи на воздействие в виде -функции при нулевых начальных условиях/

Размерность импульсной характеристики равна отношению размерности отклика цепи к произведению размерности внешнего воздействия на время.

Подобно комплексной частотной и операторной характеристикам цепи, переходная и импульсная характеристики устанавливают связь между внешним воздействием на цепь и ее реакцией, однако в отличие от первых характеристик аргументом последних является время t , а не угловая w или комплексная p частота. Так как характеристики цепи, аргументом которых является время, называются временными, а характеристики, аргументом которых является частота (в том числе и комплексная) - частотными, то переходная и импульсная характеристики относятся к временным характеристикам цепи.

Каждой операторной характеристики цепи H k n (p) можно поставить в соответствие переходную и импульсную характеристики.

(9.75)

При t 0 = 0 операторные изображения переходной и импульсной характеристик имеют простой вид

Выражения (9.75), (9.76) устанавливают связь между частотными и временными характеристиками цепи. Зная, например, импульсную характеристику можно с помощью прямого преобразования Лапласа найти соответствующую операторную характеристику цепи

а по известной операторной характеристики H k n (p) с помощью обратного преобразования Лапласа определить импульсную характеристику цепи

Используя выражения (9.75) и теорему дифференцирования (9.36), нетрудно установить связь между переходной и импульсной характеристиками

Если при t = t 0 функция h(t - t 0) изменяется скачкообразно, то импульсная характеристика цепи связана с ней следующим соотношением

(9.78)

Выражение (9.78) известно под названием формулы обобщенной производной. Первое слагаемое в этом выражении представляет собой производную переходной характеристики при t > t 0 , а второе слагаемое содержит произведение d-функции на значение переходной характеристики в точке t= t 0 .

Если функция h 1 (t - t 0) не претерпевает разрыва при t = t 0 , т. е. значение переходной характеристики в точке t = t 0 равно нулю, то выражение для обобщенной производной совпадает с выражением для обычной производной., импульсная характеристика цепи равна первой производной переходной характеристики по времени

(9.77)

Для определения переходных (импульсных) характеристик линейной цепи применяют два основных способа.

1) Необходимо рассмотреть переходные процессы, имеющие место в данной цепи при воздействии на нее тока или напряжения в виде функции включения или -функции. Это может быть выполнено с помощью классического или операторного методов анализа переходных процессов.

2) На практике для нахождения временных характеристик линейных цепей удобно использовать путь, основанный на применении соотношений, устанавливающих связь между частотными и временными характеристиками. Определение временных характеристик в этом случае начинается с составления операторной схемы замещения цепи для нулевых начальных условий. Далее, используя эту схему, находят операторную характеристику H k n (p), соответствующую заданной паре: внешнее воздействие на цепь x n (t) - реакция цепи y k (t). Зная операторную характеристику цепи и применяя соотношения (6.109) или (6.110), определяют искомые временные характеристики.

Следует обратить внимание, что при качественном рассмотрении реакции линейной цепи на воздействие единичного импульса тока или напряжения переходной процесс в цепи разделяют на два этапа. На первом этапе (при tÎ] t 0- , t 0+ [ ) цепь находится под воздействием единичного импульса, сообщающего цепи определенную энергию. Токи индуктивностей и напряжения емкостей при этом скачком изменяются на значение, соответствующее поступившей в цепь энергии, при этом нарушаются законы коммутации. На втором этапе (при t ³ t 0+ ) действие приложенного к цепи внешнего воздействия закончилось (при этом соответствующие источники энергии выключены, т. е. представлены внутренними сопротивлениями), и в цепи возникают свободные процессы, протекающие за счет энергии, запасенной в реактивных элементах на первой стадии переходного процесса. Следовательно, импульсная характеристика характеризует свободные процессы в рассматриваемой цепи.

Приведенные в предыдущем параграфе выражения (5.17), (5.18) для коэффициентов усиления можно трактовать как передаточные функции линейного активного четырехполюсника. Характер этих функций определяется частотными свойствами параметров Y.

Записав в виде функций , приходим к понятию передаточная функция линейного активного четырехполюсника . Безразмерная в общем случае комплексная функция является исчерпывающей характеристикой четырехполюсника в частотной области. Она определяется в стационарном режиме при гармоническом возбуже-нии четырехполюсника.

Передаточную функцию часто удобно представлять в форме

Модуль иногда называют амплитудно-частотной характеристикой (АЧХ) четырехполюсника. Аргумент называют фазо-частотной характеристикой (ФЧХ) четырехполюсника.

Другой исчерпывающей характеристикой четырехполюсника является его импульсная характеристика , которая используется для описания цепи во временной области.

Для активных линейных цепей, как и для пассивных, под импульсной характеристикой цепи подразумевается отклик, реакция цепи на воздействие, имеющее вид единичного импульса (дельта-функции). Связь между нетрудно установить с помощью интеграла Фурье.

Если на входе четырехполюсника действует единичный импульс (дельтафункция) ЭДС со спектральной плотностью, равной единице для всех частот, то спектральная плотность выходного напряжения равна просто . Отклик на единичный импульс, т. е. импульсная характеристика цепи, легко определяется с помощью обратного преобразования Фурье, примененного к передаточной функции :

При этом необходимо учитывать, что перед правой частью этого равенства имеется множитель 1 с размерностью площади дельта-функции. В частном случае, когда имеется в виду б-импульс напряжения, эта размерность будет [вольт х секунда].

Соответственно функция является преобразованием Фурье импульсной характеристики:

В данном случае перед интегралом имеется в виду множитель единица с размерностью [вольт х секунда]^-1.

В дальнейшем импульсную характеристику будем обозначать функцией , под которой можно подразумевать не только напряжение, но и любую другую электрическую величину, являющуюся откликом на воздействие в виде дельта-функции.

Как и при представлении сигналов на плоскости комплексной частоты (см. § 2.14), в теории цепей широко распространено понятие передаточной функции рассматриваемой как преобразование Лапласа от функции 8

ВОЕННАЯ
АКАДЕМИЯ
СВЯЗИ
2 кафедра
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ
по учебной дисциплине
«Электроника, электротехника и схемотехника»
Тема № 4 Режим негармонических воздействий в
линейных электрических цепях
Занятие № 17 «Расчет временных характеристик
линейных электрических цепей»
Санкт-Петербург

УЧЕБНЫЕ ВОПРОСЫ:
1. Анализ временных характеристик линейных
электрических цепей.
2. Контроль усвоения изученного материала.
ЛИТЕРАТУРА:
Бабкова Л.А., Киселев О.Н. Методические рекомендации к
практическим занятиям и руководство к лабораторным работам по
дисциплине «Основы теории цепей»: Учеб.пособие.– СПб.: ВАС, 2011.
2. Улахович Д.А. Основы теории линейных электрических цепей:
Учеб.пособие. – СПб.: БХВ-Петербург, 2009.
1.

Задача 1

1. Анализ временных характеристик линейных
электрических цепей.
Задача 1
Найти импульсную и переходную характеристики электрического
фильтра нижних частот с максимально плоской АЧХ, если известна
передаточная функция:
1
H (p) 2
.
p 2 p 1

1
h (p) H (p).
p
h (p)
1
p(p 2 p 1)
2
.

2. Определим изображение импульсной характеристики:
g (p) H (p).
Таким образом изображение импульсной характеристики будет
иметь вид:
g (p)
1
p 2 p 1
2
.
Воспользовавшись таблицей соответствий определяем графическое
изображение переходной и импульсной характеристик:

Переходная характеристика
h (p)
1
p(p 2 2 p 1)
Рис1 . График f(t)
A
p(p 2 α1 p α2)

Импульсная характеристика

g (p)
1
p2 2 p 1
A
p 2 α1 p α2

Задача 2

Найти импульсную и переходную характеристики цепи, если известна
ее передаточная функция:
181,8 p
H (p) 2
p 1091 p 1,818 106
1. Определим изображение переходной характеристики
1
h(p) H (p)
p
2. Определим изображение импульсной характеристики:
g (p) H (p).
181,8 p
g (p) 2
p 1091 p 1,818 106

Переходная характеристика
181,1
h(p) 2
p 1091 p 1,818 106
A
2
p α1 p α2

Импульсная характеристика

181,8 p
g (p) 2
6
p 1091 p 1,818 10
Ap
p 2 α1 p α2

Задача 3 Определить переходные и импульсные характеристики цепи, состоящей из последовательно соединенных элементов R и C.

1. Найдем передаточные функции данной цепи для
представленных реакций:
uc (p)
Н1 (p)
;
u1 (p)
uR (p)
Н 2 (p)
.
u1 (p)

2. Найдем значение реакции на элементах С и R.

1
u1 (p)
1
u1 (p)
uc (p) i (p)
;
pC R 1 pC pRC 1
pC
u1 (p)
u1 (p) pRC
uR (p) i(p) R
R
.
1
pRC
1
R
pC

3.Передаточная функция в операторной форме:

1
H1 (p)
;
pRC 1
pRC
H 2 (p)
.
pRC 1
4. Найдем изображения переходных характеристик:
H1 (p)
1
hC (p)
p
p (pRC 1)
1
RC
1
p p
RC
H 2 (p)
RC
1
h R (p)
.
p
pRC 1 p 1
RC
;

4. Изображение импульсных характеристик находим по соотношению:

g (p) H (p)
1
1
g C (p) H1 (p)
RC ;
pRC 1 p 1
RC
1
pRC
1
g R (p) H 2 (p)
1
1 RC .
1
pRC 1
pRC 1
p
RC

Спасибо за внимание!

Допустим, что к цепи приложено ступенчатое воздействие, изображение которого является функция

Допустим, что к цепи приложено ступенчатое воздействие
изображение которого является функция A
p
х(t) A 1(t)
.
x (t)
0 при t 0;
x(t)
A при t 0.
A
t
0
Рис. 1. Ступенчатое воздействие
Тогда операторная передаточная функция будет иметь вид:
y (p) y (p)
y (p)
H (p)
p
.
A
x (p)
A
p
(10)
,

Осуществляя L-преобразование выражения (7), т.е. найдем L-изображение переходной характеристики. В силу свойства линейности

Осуществляя L-преобразование выражения (7), т.е. найдем Lизображение переходной характеристики. В силу свойства линейности
преобразования Лапласа получаем:
1
h (p) T (p).
p
(11)
Это выражение совпадает со вторым сомножителем правой части (10)
и, следовательно, между операторной передаточной функцией и
изображением переходной характеристики h (p) имеется следующая
взаимосвязь:
H (p) ph (p);
1
h (p) T (p).
p
(12)
(13)
Аналогично установим связь между H (p) и изображением
импульсной характеристики g (p) :
y (t)
g (p)
;

Если же на цепь подается импульсное воздействие, изображение которого равно, то операторная передаточная функция,

Если же на цепь подается импульсное воздействие х(t) Sи (t) ,
изображение которого х (p) равно
, то операторная передаточная
и
функция, соответствующая этому воздействию, имеет вид:
S
y (p) y (p)
H (p)
.
х (p)

(14)
Это выражение совпадает с функцией изображения импульсной
характеристики цепи. Следовательно,
g (p) H (p).
(15)

Рассмотрим связь между переходной и импульсной характеристиками
цепи. Не трудно заметить, что их изображения связаны соотношением
g (p) ph (p).
Проведя тождественное преобразование последнего равенства
(прибавив
h(0) h(0)) получим:
g (p) ph (p) h(0) h(0).
ph(p) h(p)
Поскольку
представляет собой изображение
произвольной переходной характеристики, то исходное равенство
можно представить в виде
g (p) h(0) L h / (t) .
Переходя в область оригиналов, получаем формулу, позволяющую
определить импульсную характеристику цепи по известной
ее
переходной характеристике, g (t) h(0) (t) h (t).
g
t
h
(t).
Если h(0) 0 , то
Обратное соотношение между указанными характеристиками имеет
t
вид:
h(t) g (t)dt.
0
(15)

3. Связь между временными и частотными
характеристиками цепи
e t
Для данной цепи определить операторную
передаточную функцию и найти выражения
для ее частотных характеристик
C
C
R
u1 (t) R
u2 (t)
и2 (p)
H (p)
.
e (p)
Рис. 5. Схема RC-цепи
Изображение реакции u2 (p) определим из системы узловых
уравнений, составленных для L-изображений узловых напряжений
u1 (p); u2 (p) :
(2 pC G)u1 (p) pCu2 (p) pCe(p);
pCu1 (p) (pC G)u2 (p) 0.

Отсюда

e (p) p 2
u2 (p)
;
2
G G
2
p 3p 2
C C
2
p
H (p) 2
2
p 3 p
где для упрощения записи введено обозначение
G
.
C
Для нахождения комплексной передаточной функции положим в
последнем выражении p j . Тогда
H (j) 2
.
2
() j3
2

АЧХ определяется модулем полученной функции, а ФЧХ находим
как аргумент
H (j).
H (j)
2
(2 2) 9 2 2
H j
3
() arctg 2
(2)
1
0
а
0
б
Рис. 6. Графики частотных характеристик RC-цепи: а – АЧХ, б – ФЧХ

ВЫВОДЫ:
1. Передаточная функция является L-изображением импульсной характеристики.
2. Передаточная
функция
является
дробно-рациональной
функцией
с
вещественными коэффициентами.
3. Полюсы устойчивой передаточной функции лежат в левой р-полуплоскости.
4. Степени полиномов числителей передаточной функции и квадрата АЧХ не
превышают степеней полиномов знаменателей; при невыполнении этого
свойства АЧХ на бесконечно больших частотах (ω → ∞) должна принимать
бесконечно большое значение, поскольку числитель в этом случае растёт
быстрее знаменателя.
5. Частотные характеристики цепи вычисляются по передаточной функции при
p = jω.
6. Квадрат АЧХ является чётной рациональной функцией переменной с
вещественными коэффициентами: H(jω) 2 = H(–jω) 2 .
7. По передаточной функции можно изобразить схему цепи.

.
Вопрос №1 а. Свободные колебания в
последовательном колебательном контуре.
В момент t=0 произошла коммутация,
т.е. ключ (Кл.) из положения 1 перешел в
положение 2.
Заряженная емкость оказалась
подключенной к RL-цепи.
Рассмотрим процессы происходящие в представленной цепи до коммутации
До коммутации емкость С была подключена
параллельно источнику постоянного напряжения Е,
(ключ (Кл.) находился в положении 1).
Напряжение на емкостях равнялось Е.
uC(+0) = uC(-0) = E;
iL(+0) = iL(-0) = 0.

Рассмотрим процессы происходящие в цепи после коммутации
Учитывая, что напряжение на емкости
скачком измениться не может, в соответствии с законом коммутации имеем:
uC(+0) = uC(-0) = E
Начальные условия НЕНУЛЕВЫЕ
Рассмотрим схему замещения цепи для момента времени
По закону Ома в операторной форме,
определим изображение реакции:
E
p
E
E
L
L
i (p)
2
,
2
1
R
1
p 2 p 0
pL R
p2 p
pC
L
LC
где:
0
R

2L
1
LC
-круговая частота собственных колебаний контура без потерь.

При анализе свободных и переходных колебаний в сложных цепях
изображение реакции y (p) представляет собой дробно-рациональную функцию
переменного p с вещественными коэффициентами, которую можно записать в
виде отношения двух полиномов:
M (p) bm p m bm 1 p m 1 bm 2 p m 2 ... b0
y (p)
N (p)
p n a n 1 p n 1 a n 2 p n 2 ... a 0
По основной теореме алгебры полином степени n может быть разложен на n
простых сомножителей, т.е.:
N(p) = (p-p1) (p-p2),…, (p-pn),
где p1, p2, p3,…,pn – корни полинома N(p) или полюсы функции y (p) .
Полином также можно представить в виде произведения m сомножителей:
M(p) = (p-p01) (p-p02) (p-p03),…,(p-p0m).
где p01, p02, p03,…,p0m - корни полинома М(p) или нули функции y (p) .
В силу вещественности коэффициентов ai и bi нули и полюсы изображения y (p)
могут быть вещественными и (или) комплексно-сопряженными.
Ясно, что дислокация полюсов y (p) определяет характер свободных и
переходных колебаний в анализируемой цепи.

Рассмотрим уравнение:
p 2 2 p 02
Оно имеет два корня, (полюсы изображения):
p1,2 2 02
В силу вещественности коэффициентов данного уравнения (δ, ω), полюсы
могут быть вещественные и комплексно-сопряженные.
Поэтому при анализе свободных колебаний в последовательном контуре
возможны три режима колебаний.

Корни уравнения комплексно-сопряженные:
p1,2 j 1
где:
1 02 2 .
такой характер корней имеет место при 0
или R 2
L
.
C
Оригинал для тока в
этом случае будет:
E t
i(t)
e sin 1t ,
1 L

Амплитуда колебания убывает во времени по экспоненциальному закону,
поэтому процесс называют затухающим. Скорость убывания амплитуды
свободных колебаний определяется значением коэффициента затухания δ.
2
Частоту: 1 02 2 0 1 называют частотой собственных
0
затухающих колебаний контура. Она, как видно из формулы, всегда меньше
частоты собственных незатухающих колебаний контура w0 и зависит не только от
значений индуктивности и емкости контура, но и от значения его резистивного
сопротивления.
Период затухающих колебаний:
T
2
2
0
2
.
Коэффициент затухания связан с добротностью контура соотношением:
где: Q
R 0
.
2 L 2Q
0 L
- добротность последовательного контура.
R
Таким образом, колебания в контуре убывают тем медленнее, чем выше его
добротность.

2. Критический режим гармонических колебаний.

p1 p2 ,
.e. 0 ; R 2
T
L
.
C
Режим колебания в контуре, соответствующий кратным корням
характеристического уравнения (полюсами изображения), может
рассматриваться как предельный случай колебательного режима,
когда частота собственных затухающих колебаний в контуре
нулю, а период колебаний становится
1 02 2 равна
бесконечно большим.

имеет вид:
E0 t
i(t)
te
L


Корни уравнения вещественные кратные:
p1,2 ,
где: 2 02 ; .
Первичные
параметры
контура
должны
удовлетворять неравенству:
L
R 2
.
C
Оригинал i(t), соответствующий данному расположению полюсов изображения,
имеет вид:
E
E
i (t)
L(p1 p2)
e p1t
L(p1 p2)
e p2t

Вопрос №1 б. Переходные колебания в последовательном
колебательном контуре.
Начальные условия НУЛЕВЫЕ
E
E
E
p
L
L
i(p)
2
;
2
1
R
1
p
2
p
0
pL R
p2 p C
pC
L
L
uC (p) i(p)
По таблице соответствий:
uC (t) E Ee (cos 1t sin 1t).
1
t
Напряжение на емкости контура
при t→∞ стремится к установившемуся значению, равному
напряжению источника. Следовательно, емкость при t→∞ заряжается до напряжения Е. Процесс
заряда при комплексно-сопряженных полюсах изображения
имеет колебательный характер.
1
LC
.
2
2
pC p(p 2 p 0)

Значение uC(t) в отдельные моменты времени превышают значения напряжения при большой добротности может почти вдвое превосходить ЭДС источника.
При t→∞ значения тока в контуре, напряжений на резистивном элементе и на
индуктивности контура стремятся к нулю, а напряжение на емкости - к ЭДС
источника. Следовательно, цепь переходит в режим постоянного тока. Процесс
установления колебаний происходит тем медленнее, чем выше добротность
контура. Для оценки времени установления можно воспользоваться полученной
ранее формулой:
ty
3 4, 6
,
что соответствует промежутку времени, по истечении которого амплитуда напряжения uC(t) отклоняется от установившегося значения не более чем на 0,05 или 0,01.
Вопрос №2 Свободные и переходные колебания в
параллельном колебательном контуре.
2.1 Свободные колебания в ПрКК
Начальные условия НЕНУЛЕВЫЕ
iL(+0) = iL(-0) = I0
uC(+0) = uC(-0) = u0

I0
Cu0
p
I0
u0 p
C ,
u (p)
2
2
1
p
2
p
0
pC G
pL
G
- коэффициент затухания контура;
2C
1
0
- частота собственных колебаний контура без потерь.
LC
где:
1. Режим затухающих гармонических колебаний.
Первичные параметре контура в этом случае должны удовлетворять неравенству:
G
2C
1
LC
Закон изменения напряжения на контуре в соответствии с таблицей соответствий определяется выражением:
I0
u
0
t
C
u (t) e u0 cos 1t
sin 1t
1

Анализ полученного решения показывает, что
колебания носят затухающий характер, причем
амплитуда
колебания
убывает
по
экспоненциальному закону. Чем больше
коэффициент затухания, тем быстрее затухают
колебания. Как и в последовательном контуре,
частота свободных колебаний:
1 0 1
0
2
0
2
2
всегда меньше частоты собственных незатухающих колебаний контура
2. Критический режим гармонических колебаний.
Такой характер корней имеет место при δ=ω0, когда между первичными параметрами контура выполняется соотношение:
G
2C
1
LC
I0
t
u (t) u0 u0 t e
C

3. Апериодический режим гармонических колебаний.
Этот случай возможен при условии δ=ω0, что соответствует следующему
соотношению между первичными параметрами контура:
G 2
C
.
L
I0
I0
u 0 p1
u0 p2
u (t) C
e p1t C
e p2t
p 2 p1
p 2 p1
Следует заметить, что при G=0 колебания в контуре носят незатухающий характер,
так как контур не рассеивает энергию.

2.2 Переходные колебания в ПрКК
Используя закон Ома в операторной форме, найдем изображения для всех
реакций:
I
p
I
I
C
u (p)
2 C
;
2
1
G
1
p 2 p 0
pC G
p2 p
LC
C
LC
I
G
C
iG (p) u (p)G 2
;
2
p 2 p 0
I
u (p)
LC
iL (p)
;
2
2
pL
p (p 2 p 0)
iC (p) u (p) pC
Ip
.
2
2
p 2 p 0

Закон изменения напряжения в параллельном
колебательном
контуре
аналогичен
закону
изменения тока в последовательном контуре.
Определим временную зависимость тока iC(t).
iC (t) Ie
p
(cos 1t sin 1t).
1
Так как при t=0 напряжение на емкости было равно нулю, то для этого момента
времени следует считать зажимы емкости замкнутыми накоротко. Следовательно,
в момент t=+0 весь ток I протекал через емкость (iC(+0))=I. При t→∞ цепь
переходят в режим постоянного тока, при котором u(∞)=0, iL(∞)=I, iG(∞)=iC(∞)=0.
Чем ниже добротность (больше затухание) контура, тем быстрее заканчивается
переходный процесс. Инструкции